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ABSTRACT

In this thesis we consider the second order elasticity problems in an isotropic
compressible and incompressible elastic half-space which is acted upon by the non-
uniformly distributed loads. The two cases of non-uniform normal and shear loading
are considered separately. In both cases we obtain the closed form solutions. The
method of integral transform is employed to determine the solutions for both linear
and nonlinear cases.

The basic equations governing the finite elastic deformation are given in chapter
1. For the purposes of reference the equilibrium equations of the classical elasticity
and their general solutions are also written down in this chapter.

Chapter II is concerned with the normal load. By noticing the symectry of
the problem in the present case we employ the Papkovitch-Neuber displacement
solution to both linear and second order problems. Several linear and a second order
illustrations are presented. Some of these linear solutions also occur in the physical
circumstances and the others are probably new. Solutions to the incompressible.
material are also considered. Some numerical results for the compressible and
incompressible materials are given in the final section.

Chapter III discusses the shear load. Since the problem now is no longer sym-
metric the equations to be solved are much more complicated. The displacement
vector is chosen to be the Garlerkin’s solution plus an additional term. By this
choice we are able to solve some non-homogeneous fourth order partial differential
equations. Again some linear illustrations are presented and most of these appear
to be new. A,sgcond order illustration is then discussed in the final section.

In the final chapter some conclusions are given.
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CHAPTER 1
BASIC EQUATIONS

1.1 Introduction.

In finite elasticity theory the mathematical equations governing the deformation
of an isotropic compressible elastic material are highly nonlinear. As a result,
the exact solutions of the boundary value problems have been possible in only
some restricted cases. Most of these are axially symmetric problems for which
the differential equations are effectively reduced to ordinary nonlinear equations
and which can be integrated when material is incompressible. For two-dimensional
problems other simplifications can be made and the complex variable method can
often be used. However, when we are concerned with compressible materials or
with general type of deformations recourse has to be taken to the approximate
methods. The method of successive approﬁmatioﬁ is one such technique which
has received considerable attention. In the method of successive approximation,
the displacements,stresses, etc. are expanded in a power series in some suitable
parameter, with non-zero radius of convergence. A general expansion scheme has
been given by Green and Adkins(1970). Signorini(1949) and Stoppeli(1954,1955)
have discussed the results on existence and un.iqueuess"z)f series solution under
smta.ble conditions. Signorini(1949) has shown that when the applied tractions are
speclﬁed over the boundary, such that the tota! load is equipollent to zero but does
not possess an axis of equilibrium, then a series expansion of the elastic equations
is unique if it exists. Further, when the applied tractions and body forces both
contam a mult:plymg parameter, Stoppeh( 1954 1955) has given a proof of existence

and umqueness of the solution of the genera.l elastic equatmns Stoppeli(1954,1955)

Typeset by ApS-TEX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



has also shown that the displacement can be expanded as an absolutely convergent
power series in some parameter, with non-zero radius of convergence, provided the
parameter is sufficiently small and provided sufficiently smooth solutions of the
classical linear equations of elasticity exist. As Green and Adkins (1970) poirt out,
there may, however, be solutions of the linear elastic equations which do not satisfy
these conditions. Examples of such cases include the solutions of flat-ended punch
problexﬁ and crack problems.

In the method of successive approximation, if we keep the first order terms in the
parameter and neglect the terms of higher order than the first we get the classical
or linear elasticity equations. If we keep the first and second order terms and
neglect the terms of higher order than the second we get the second order elasticity
equations. Similarly, if we keep all the terms lower or equal to the n-th order and
neglect the terms of higher order than the n-th we obtain the n-th order elasticity

- equations. By series expansion, Signorihi(1930) reduces a problem of the n-th order
to n problems in linearized theory, for the same material. For the second order
theory a method of the same kind was devgloped by Rivlin(lQS3). In this thesis
we consider the second order elasticity equations. Second order solutions include
terms which are quadratic in the displacement gradients. In general, obtaining
a particular integral in explicit form is a formidable task in solving the second
order problems. Rivlin(1953) and Green and Spratt(1954) were among the first to
formulate second §rder theories. To find the solution of a second order problem,

“% Rivlin(1953) gives following steps to be sufficient:

1. On the basis of the linearized theory, calculate the displacements arising from
the given forces.

2. On the basis of the second order theory, calculate the additional forces needed .

z “to maintain the displacements found in step 1.

2
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3. On the basis of the linearized theory, calculate the displacements correspond-
ing tc the additional forces just determined. These displacements, reversed, are the
second order displacements arising from the given forces.

This approach reduces the second order problem to the solution of linear elas-
ticity problem with body forces and surface displacements or tractions which are
quadratic in the first order solutions. A comprehensive account of this method
is given by Truesdell and Noll(1965), Green and Adkins(1970) and Spencer(1970}.
Earlier Spencer(1959) has also considered the approximation based on perturbation
of the strain energy function. Goodman and Naghdi(1989) have presented the use

" of displacement potentials for the solution of compressible or incompressible second
order elasticity problem, but this method is somewhat similar to Rivlin’s method.

Several methods for solving special problems in the second order elasticity have
also been developed. Shield(1967) has discussed inverse deformation results in finite
elasticity and Choi and Shield(1981) have applied this approach to some axisym-
metric problems. It is found that there are only two elastic constants that govern
this special class of compressible material. Carlson and Shield(1965) have developed
a method to find the second order solution for a special class of problems without
solving the boundary value problem once the first order solution is known. For
incompressible material a variety of techniques for the second order theories have
been proposed. Chan and Carlson(1970) have developed a method and applied it
to solve the second order torsion problem. The key to this method is that it reduces
the second order problem to a classical problem of plane strain, without body force.
Their results are expressed in terms of two elastic constants since the strain energy
function in this situation takes the Mooney’s form (Mooney(1940)). Chan and
Carlson suggest that their method may be applicable to other problems, and their
discussion is amplified by ﬁiu(1973). Hill has shown that the Chan and Carlson’s

3
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procedure takes on complete generality whenever the deformation of the material is
sich that the strain energy function is a symmetric function of the strain invariants
Ii and I,. He has discussed this approach for a special class of material by using
the results for the inverse deformation developed by Shield(1967). For axisym-
metric deformation the general expansion e:pressions of isotropic incompressible
clastic equations have been given by Selvadurai and Spencer(1972) and they have
been applied by Selvadurai(1974) to torsion of a thick spherical shell. Carroll and
Rooney(1984) have extended the Chan and Carlson’s method and have shown that
the induced body force field can be expressed as the sum of a conservative field and
a residual field. The conservative field can be absorbed in the arbitrary pressure.
The residual field is also conservative for several classes of problems, including tor-
sion, plane stréin, antiplane shearing and potential displacements. They discuss
two such illustrative problems. The contact problems in second order elasticity
theory have been considered by Choi and Shield(1981) and Sabin and Kaloni(1983,
1989). As stated earlier, Choi and Shield(1981) used the inverse deformation ap-
proach of Shield(1967) in their work, while Sabin and Kaloni(1989) employed the

standard second order elasticity model in their calculations.

In the present thesis we follow Rivlin’s approach to consider the second order
problem in a compressible elastic half-space which is acted upon by non-uniformly
distributed loads. In Chapter II we consider normal load case. In this case the
problem is axisymmetric. We use Papkovitch-Neuber displacement solution and
employ the method of integral transforms, as discussed by Sneddon(1972), in both
the linear and second order solutions. Several slecml linear solutions are given in
accordance with the classical results. In the final section we specialize the second

order solution for isotropic incompressible material. Chapter III deals with the

shear loads. The procedure of finding solutions is same as that in Chapter II

4
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However, the problem now is no longer axisymmetric and the equations to be solved
are much more complicated. It turns out that by selecting the displacecment vector
to be the Garlerkin’s solution plus the curl of an additional harmonic vector in the
linear solution and the Garlerkin’s solution plus an irrotational term in the second
order solution and by employing the integral transformation technique we are able
to obtain the linear and second order solutions. Several linear solutions ase again
documented in this case and two of these solutions appear to be new. The second

order solution is then discussed for one particular situation.

1.2 Constitutive Equations.

Suppose that the elastic body B occupies the region Ry at time ¢ = 0 and moves
so that at a subsequent time ¢ it occupies a region R. We make the assump-
tion(which is an essential feature of continuum mechanics) that we can identify
individual particles of the body B, that is, we assume that we can identify a point
of R { denoted by P) with position vector y which is occupied at ¢ by the particle
which was at Py at the time ¢ = 0. Then the motion of B can be described by
specifying the dependence of the positions y of the particles of B at time ¢ on their

positions x at time ¢ = 0, that is, by equations of the form

y =y(x,t) (1.1)

We assume that the Jacobian

J= det(%) >0 (1.2)
; ‘

The physical significance of this assumption is that the material of the body

cannot penetrate itself, and that material occupying a finite non-zero volume can-

5
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not be compressed to a point or expanded to infinite volume during the motion.

Mathematically (1.2) implies that (1.1) has the unique inverse

X = x(Y7t) (1'3)
The displacement vector u of a typical particle from its position x in the reference

configuration to its position y at time ¢ is

u=y-x (1.4)

In the material description u is regarded as a function of x and ¢, so that

u(x)i) = y(x,t) —x (1.5)

and in the spatial description u is regarded as a function of y and %, so that

u(y,t) =y ~ x(y, ) 1.6)

The representation (1.5) determines the displacement at time ¢ of the pa.l;ticle

defined by the material coodinates z;. The representation (1.6) determines the

displacoment which has been undergone by the particle which occupies the position
y at time ¢, \

For linear elasticity the constitutive equations can be written as

oW
~ Oeix

where W is the strain energy function which may be approximated by a quadratic

tik (17)
function of the infinitesimal strain components e;;. However, for finite elastic de-

formation the constitutive equations are much more complicated. The géneral form

may be given by
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tix = fur( Fip) (1.8)

where fi; are the single-valued functions of Fj, = 0y;/0z, and satisfy fix = fi.
When the material is hyper-elastic there exists strain energy function W which
is an arbitrary function of the deformation gradient components Fj, and can be

expressed in the form W = W(C) such that(cf. Atkin and Fox(1980))

tix

_ p Oyi Oy ( oW oW ) (1.9)

= 0 821 Dz, \0Cys | 8C,,

where C = FT o F, pp and p are densities at time ¢ = 0 and time ¥ respectively.

Equation (1.9) is the general form of the constitutive equation for a finite elastic

solid.

If the material is isotropic, then W is an invariant of C and therefore it can be

expressed as a function of the strain invariants I;, I; and I, so that

W =W, 5L, Is) (1.10)
and we have

oW 6w 8L, oOw 8L, oW 98I,

—_— —— —_— —_— 1-
3C,, — oL, 8C,, | 8%, 8C,. * 8L 8C,, (111)
o,  oCw . . .
ans - ana B 6’“’6&3 - 61” (1.12)
8, _18CiiCii —CurCit _ -
8C,e 2 8C5s = filps = Coo (113)

Since I3 can be expressed as

fa - %{trCs ke Ilt‘l'cz + fthC}

7
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it follows that

aac{a = %{f25ps + Tftsp, - 3f’ Cps - trczéps + 3CkasK} = I-Zaps - IICPH + CPkC"k
pe

(1.14)

By substituting from (1.11) to (1.14) into (1.9) we obtain

a 3 a
tix = 2— d a: aik {(W1 +I1W2 +I2W3)6p, —(Wz +11W3)Cp8+WacpJC‘9]} (1 15)
o D ]

where

ow ow ow
W1—-a—f1, Wz—"é“l——.;, Ws-—a—fa

This is a general form of the constitutive equation for an isotropic finite elastic solid.

It may be expressed more concisely by using compact notation and f3A = (po/p)* as
T = 2 3F o {(Ws + hW; + EWS)L - (Ws + LWS)C + WiC?} o« FT  (1.16)
This equation can be further simplified by noting that
B =FoFT7, Bz_= FeCoeFT, B =FeC?eFT
and lience equation (1.16) may be rewritten as
T= 21‘;% (W1 + LW, + LW2)B — (W; + L,W:)B? + W, B%) (1.17)
By the Cayley-Hamilton Theorem, B satisfies that
B? —f1B2+f2B —f31;0 (1.18)
and therefore the constitutive equation can finally be written as

T = oI (LW, + LWs)L + Wi B — LW, B!} (1.19)

8
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This equation can also be written in the component foria as
=1 - -
tie = 205 T {(L2Wa + IsWs)éi + Wi By — WaGlx} (1.20)

where G;, denotes the co-factor of B;; in det B;r. Further simplification arises if
the material is incompressible. In this case I; = 1, and the constitutive equation

can be expressed in the form
T = —pl + 2W,B — 2W,B™! (1.21)

where ~p is an arbitrary hydrostatic pressure and is not given by a constitutive
equation but can only be determined by using equation of motion and boundary
conditions.

There are many forms of strain energy function, which are the special cases of
equation (1.10), that have been proposed in the literature for compressible and
incompressible elastic solids. We mention some of these here now.

For incompressible materials we note that I; = 1 and hence
W =W(lL, 1) (1.22)

Since in the reference configuration C = I, the definitions of I and I, imply
I; = I, = 3. Accordingly W can be regarded as a function of ; — 3 and I, - 3
which will vanish in the reference configuration. For incompressible materials, we

have the earliest equation proposed by Treloar(1948)
W =Cy( - 3) (1.23)

where C, is a constant. It is also called as neo-Hookean equation. The next in the

sequence is Mooney-Rivlin form(see Spencer (1980)}) given by

W =0l -3)+ Gl - 3) (1.24))

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where C; and C; are again constants. Rivlin and Saunders(1952) suggested that

an equation of the form
W=C(l-3)+f(I, - 3) (1.25)

gives more accurate description of vulcanised rubber for some ranges of extension.

More recent development in this direction is due to Ogden(1972) who proposed

W =) (in/an)(85" +b5" +b5" - 3) (1.26)

3

where by, bs, b; are the principal values of B, the p, are constants, and the a, are
not necessarily integers and may be positive or negative. Equation (]26) includes
neo-Hookean and Mooney-Rivlin forms as special cases. |

Finally for compressible rubberlike materials, Blatz and Ko(1962) have suggested

a strain energy function of the form

1 1 1-2v —2v/1-2v
= - -] - =
w zﬂ'f{Jl ” + " J3 }

(1.27)
1 1, 1-2v 2p/1-20
+§ﬂ(1-f){'72—1—;+ ” I3 }
where p, f,v are constants, and
- = = =1
J1 = I1, Jz = Iz/Ia, J3 = 132 ' (1.28)

We note that when v = 1/2 and the material is incompressible so that Iy = 1,
(1.28) reduces to the Mooney-Rivlin form.

We now return to the development of the equation for the second order elasticity
theory. For small deformation, such that du;/dz; are a.ll small compared with unity,
5L-3,,-3 #nd I; —1 are, in general, of the first order of smallness in the quantities

Ou;/Oz;. We may construct three other mutually independent scalar invariants,

10
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J1, J2 and J; which are respectively of the first, second and third orders of smallness

in quantities fu;/0z. Such scalar invariants may be defined by the relations
Jy=I5-3
Jo=1I - 21, +3 (1.29)
Jh=L-L+15-1
or
L =J 43
L=J+2N +3 \ (1.30)
L=lh+tLh+hh+1
Since W is a function of Iy, J; and I3,it can be expressed as a function of Jq, J2
and J3. If we consider finite deformations of the elastic body which are sufficiently

small so that terms of higher degree than the second in the quantities du;/0z; can

be neglected in the expressions for the stress components, then we can, following

Rivlin(1953), express W in the form
W:G,(]Jl +0.1J2+02J12+63J1J2+G4Jf+0.5.]3' (1.31)

in which ag,a,,...,as5 are physical constants for the material considered. It has
been shown by Murnaghan(1937) that if material is such that the stress is zero in

the undeformed state, ag = 0, so that

W=a;Jo+ Gz-]f +a3J1Js + a4Jf + agJa (1.32)

If Jy,J2 and J3 are regarded as functions of the displacement gradients and we

neglect those terms in the displacement gradients occurring in (1.32), which are of

11
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higher degree than the third, we obtain

_ Ouy , Ou; Ou;  Ou; Ouy Ou; Ou; au,
=2(e1 + 2a2)( ) (3a:k Oz + Oz Oz; )+ 2as - )ax, Oz 9Tk
Ju; Gui Oui 1 | Ouk.,
+ 2(a1 + 2a; — ‘15)6:’:J F +4(a3 + 2a4 + 3% )( )
Ou; Ou; Qur 2 Ou; Ouj Oup
et a) g o B T 3% 83, sy, 5;
(1.33)

From (1.30) and {1.32) we get

g—?, = (as - 20.1) + 2(0.2 - a,3)J1 + a3y + 3(24]12

1

ow

8I2 (0.1 - 0,5) + aszJ1 (1.34)
o _,

oL,

Rivlin(1953) has shown that neglecting terms of higher degreé¢ than the second in

Ou;/0z}, in the expressions for Bix, Gix, I, I, I, J1 and J, we obtain

Bip = ix + eix + aix
Gix = (14 2A + a)bii. — €5 ~ air + E.

[ =3+2A+a

L=3+4A+20+E _ (1.35)
L;=1+2A+a+E

Jy=2A+a

Jo=F

12
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with the notations

o = (% +ou
=\ Bzx Oz;

o 61&,‘ 8‘!&&
ik = Oz, Oz,
e=2A=c¢,, (1.36)
Q= (g,
E = E,,

where E;; =co-factor of e;; in det ey.

Substituting (1.34) and (1.35) into (1.20) and neglecting terms of higher degree
than the second in Ju;/8z, we obtain
tir =2[{—a1ei + 2(ay + 202)A8ix} + {(4a2 — 2a3 + a1)Aeix — ayaix — (a3 — as)Eix}

+ {(a,1 + 2a2)a + (0.1 + a;;)E + 2(6(14 + 2(13 —ay) — 20.2)A2}6.'k]
(1.37)

Here e;; and A are homogeneous expressions of the first degree in Ju;/0z; and
@ik, Bix,a and E are homogeneous expressions of the second degree. If we neglect
terms of the second degree in du;/0z; in the expressions for i, we obtain the

expressions for the stress components of linear elasticity theory
tix = 2[—ayeix + 2(a; + 202)A6;] (1.38)

It is found that the Lame’s constants A and p are given by
A = 4(a; + 2az)
(1.39)
H= —20.1

For incompressible material it has been shown by Mooney(1940) that the strain
energy function may be writien, to terms of the third order of smallness in the

principal extensions, as

W =Cy(5) - 3)+ Co( - 3) (1.40)

13
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where C; and C, are constants. The stress components in this case may be writien,

to terms of the second order of smallness in the principal extensions, as

tie = 2{BiC1 — GiCo] +p (1.41)
where B!, = By, — 8ix and Gy, = G — S
1.3 Equilibrium Equations and Boundary Conditions.

If an elastic body undergoes deformation by a system of body forces X; per unit
mass of the material and surface forces X,; per unit area of surface measured in
the undeformed state of the material, then in the static state the equations for

equilibrium are given by

g TP (1.42)
and the boundary conditions may be written as
, ds
' Xm'@ = tikl;c (1'43)

where dS and dS' are elements of area of the surface of the body measured in the
undeformed a.nd deformed states respectively, so that X ,gf—ss—, is the surface traction
per unit area of the surface measured in the deformed state of the body, and I,
‘are the direction-cosines of the normal to the deformed surface of the body. From

Yi = ¢ +u; we get

Oy; _ Oz . Ou;
Oyr  Oyr O
Or ) ..
8z; Ou; Ozx;
Sip = — + — 2 i=1,2,3 1.44
Y T omom (144)
Solving for 8z ;/8yk, we obtain
O0z; -1 OI3
=022 1.45
Yk 3 aHkJ ( )
14
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where H; = 8u;/0x; (i,k=1,2,3) and then

a _ Oz; 0 (1.46)
Oyr Oy Oz;
Using (1.46) and pg = pfs% in (1.42), we get
-4
S G i =0 (147)
From Spencer(1980) we note that
detF—Sl F-! (1.48)
ds'
or
I = ;’Ss,z g{i : (1.49)

where I, are the direction-cosines of the normal to the undeformed surface. Intro-

ducing (1.49) into (1.43) gives

Xvi =

Lt (1.50)
aHka .

It has been shown by Rivlin(1953) that equations (1.47) and (1.50) can be written

as
du,|ot, ot} .
- = L : X;=0 1.51
[(1+A)5.k 6zk] B2, + B + po X (1.51)
and
Vo — 222 |1 " 1.52)
= (1 + A"lssk —_ 'é'm—k' lltik + lktik ( .
where
| tik = t:k + t'f’k (1.53) ’
. and
the = 2[—arei + 2(a1 + 2a2)Adi] (1.54)
15
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Z:’k =2[{(4(I.2 — 2a3 + a3 )Acir —aya — (a; — 0.5)E,'k}

-+ {((1.1 + 2az)a + (a; + as)E + 2(6(14 + 3as —ay — 2a2)A2}5,-k]

(1.55)

The expression for t}, contains only terms of the first order in the space derivatives

of u; and that for 2]} contains only the second order terms. Now, the displacements

#; may be determined from equations (1.51) subject to the boundary conditions

(1.52). Rivlin(1953) has proposed a general procedure to solve this boundary value

problem in the second order theory of elasticity as following:

() Find the solution of the linear elastic problem represented by

OTik

For + poXi =0
subject to
Xui = lbemip
where ‘
Tik = 2| —a1€}; + 2(ay + 2a2)A'6;;
Al = -;-ef,,
(II) Obtain the solution to the second order elastic problem given by
ZL;%‘ +pXi=0
subject to
Xoi = ey
where

Tt"k = 2 —a3 e:'k + 2((11 + 2“’2)A"6ik

Bw; Owy
el =3 4 2%
ik Oz N dz;
1
A" = Zeiy
16

(1.56)

(1.57)

(1.58)

(i.sg)

(1.60)

(1.61)
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and

‘lezi = —[A'ﬁ;k - %] lLTir — lk'r,!k (1.62)
Ov, \ Ot | O,
X = [ Al - — : ik 1.63
posti ( it 6xk) Oz, + Oz (1.63)
where
i =2[{(4a2 — 205 + a1)A' e}y, — e1al; — (a1 — a5) B}
(1.64)

+ {(ay + 2a3)’ + (ay + a3)E' + 2(6ay + 2a3 — a1 — 2a2)A?}8i]

with notations o, = (8vi./0z,)(0v;/0z,),¢' =o' ,,E' = E', and E!, = co-factor
ik 88 88 ik

of ¢}, in det e}, The displacements u; are now given by
u; = v+ w; (1°65)
1.4 Equations of Linear Elasticity Theory.

Since in order to solve the second order elasticity problems we need to solve
first the corresponding problems in linear elasticity, for completeness, we now write
down the basic equations of the linear elasticity theory. In the static state the

equations of equilibrium take the form

ZE L pXi=0 (1.66)

For the isotropic medium the stress-strain relation takes the form

(B | Bu
& = AAS; o, T8k )
tix = A4 ”"(azk + (%i) (1.67)
where & denotes the dilatation
' Ou; .
A= 2: (1.68)
17
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If we replace Lame’s constants A and p by the Young’s modulus E and the Poisson’s

ratio 7 equation (1.67) becomes

E 27 Ou;  Ouy
tig = Ay + — + —— 1.69
k 2(1 +1;)[1—21) L+8zk+ Oz; (169)

If we substitute from (1.69) into (1.63) we find that displacements u; satisfy the
equation
1 0A

2, 4 L 98 o _ 1.70
Vit T as; T (1.70)

where F; = Wp}{ i

In the absence of body forces equation (1.70) reduces to

194 _ (1.71)
The first general solution of the equilibrium equation (1.64) would appear to be
due to Galerkin(1930). If we express the displa.cements u; in terms of a vector G;

through the equation

3*Gy,
i=21-19) v G; .
u=2l-nV I (1.72)
or in vector form
u=21-7VG-V(VsG) (1.73)
then equation (1.71) is equivalent to the biharmonic equation
vigi=0 (1.74)
Corresponding to the displacement field (1.72) we have the stress field
. E 5V2G;) | B(V2G;)  B(VRGh)
tix = Sip——=—2 - 24
k 1479 ["7 i Oz; +{ 7}){ Oz, + 0z; 4 } 175
_ ast (1.75)
B:c.-axkamj

18
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Another solution in terms of four scalar potential functions was given by Pap-

kovitch(1932) and Neuber(1934). If we write

i = M ~ 4(1 — n); (1.76)
Oz;
or in vector form
u=V(®+re¥)-4(1-7n)¥ (1.77)

then the equations of elastic equilibrium (1.71) are equivalent to the equations

— 2 2
1 21? [6(;@ et - —4’?)V2¢=’] =0 (1.78)

It follows immediately that if ® and v; are harmonic functions, so that
Ve =0, V*;=0 (1.79)

equation (1.71) is satisfied. The stress field corresponding to this displacement field

is given by the equations

B 23 Oy Ou; _, O
Ll e - ‘(1‘2”)(393, )'*“ ®i paday ~ 1oz, ok (1:80)

The connection between Galerkin’s solution and the Papkovitch-Neuber solution

was pointed out by Mindlin(1936). If we put
B = 22 V2Gy) - 99-

. @i (1.81)

¢: = "“i(szi)

into the Papkovitch-Neuber solution we get Galerkin’s solution.

18
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CHAPTER 11

SECOND ORDER EFFECTS IN AN ELASTIC HALF-SPACE
ACTED UPON BY A NON-UNIFORM NORMAL LOAD

2.1 Statement of the Problem.

We consider a compressible elastic half-space in which a non-uniform normal
load, of total amount P, is acting over a circle of radius a(see Fig.1). We choose
cylindrical polar coordinates (r, 8, z) such that the load is acting in the plane z =0

in the z-direction. The boundary conditions are
X,r=0, X,.=-=2uf(r) (2.1)

where

_ (1+68)a*—r*)’H(a~r)P
- 27["“12(14‘6)

f(r) (2.2)

and § > —1 is a constant. X,; are the surface tractions and H is the Heaviside
unit function.We assume that there are no body forces. According to the Rivlin’s
procedure the problem to be solved can be split into following two subproblems:

(I) The Linear Solution: solve

Ote.  O12y  Tr: '
rs: + Z_=x + MR
Or 0z T
subiect to
Trz(7,0) = 0
(1+68)(a® —r2)*H{a—1)P (24)
7:2(r0) = — Tg21+0)
(1T} The Second Order Solution: solve
ort,  Onte  rly =7
B et T X, =0
(2.5)

a1,  Ory, T, ' g
Gr +"'§;"+“;'+POX=—0

20
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subject to
T (r0) = =X, 7.(r0)=-X,, (2.6)

where (cf. Appendix 4,)
Ov, O1rr  OU: OTpy

1 ov, O1p:  Ov; O7,:
Xl — ﬁ o — r r: 2 re
Potr [61' or + or 0z -*_1'2(’r Tes) + 8z Or + Oz Gz}
7! or! Tl =T
+ rr+ r: + rr 96
or 0z T

X! o [3'0,. OTr: 4 Ov. OTr:  UpTp: + Ov, 07 + Ov; Or.:
PR ==15 "8 " Br 0z ' 12 ' 8z or ' 08z Oz

$ O Oy T 0
or 0z r
X! =- a'"’(,g:’ D o ,0) + 7., 0)
X, = [Bv,('r, ) + ’D,-(T,O)]T“(r 0) + 71.(r,0) .
vE or 7 I w0
and
7!, = 2[(4a; — 2as + a;)A'e}, — a1, — (a1 — a5)E;, + %]
Too = 2[(402 — 203 + o YA'ege — a1y — (a3 — a5 )Egg + X
7!, = 2[(4a; — 205 + a1)A'¢l, — a1, — (a1 — a5)EL, + 3] (2.9)
71, = 2[(4az — 2a3 + a;)A'e;,, — ara, — (a1 — a5)E}.]
¥ = (a1 + 2a2)0’ + (ay + a3)E' + 2(6ay + 2a5 — 2a; — a;)A"?
2.2 The Linear S(;lution.
For the linear solution we are required to solve the subproblem (I)
We employ Papkovitch-Neuber displacement solutions
w= 20N _yq gy, (2.10)
together with
B =(-mn), hi=t=0, b=y
21
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where ¢ satisfies

P 18p 54

Xz = 2.12
or2  ror + 9z2 0 ( )

The displacement components in cylindrical polar coordinates are given by

g i
ve(r,2) = (1 - 21))6—;1_) + zb-r—;z

vg(r,2) = 0 (2.13)

9 9%
v:(ry2) = —2(1 — n)a—f + zgzi:

By using the constitutive equations we find that

5
Trs = 202 02022
_ 8¢ 0%
T = 2l
Tro =T:0 =0 (2.14)
il 8¢ 62¢
Tre = 2”’[(1 '"217)? + za 25z ]
21] 8¢ z 8¢ 32¢
oo = 2“[ ar T roros I- r=
If we let
5= / rdo(Er)p(r, 2 dr (2.15)
o
it then follows that (2.12) reduces to
52
Bzf £6=0 (2.16)

The appropriate solution to (2.16) is $ = Ae~%*, where A is an arbitrary function

of £. On using the boundary condition (2.4) we find

Ag) = Qﬁg{}(—@ (2.17)

22
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where
(14 8T + 8)P
21=3 7 ;s (1+0)

Q:

(2.18)

Using (2.15) and taking following Hankel transforms: Hjlv,], Holv:], Hofr::],

Hy[7,..), Hol[er + 790] » Holvr + 7r/2p] and then taking the inverse transforms we

find
v(r,2) =Q [zK(r,2,—6) — (1 — 29)K(r, 2, —(1 + §))]
v,(r, 2) =Q[2(1 — )I(r, 2,—(1 + 8)) + zI(r, z,—6)]
o7y 5) = = QU 2,~8) = 2T{r,2,(1 = )
+ @ (1 —29)K(r,z,—(1 + 8)) — 2K (r,z,~8)]
(2.19)
Tee(r, 2) = — 4pnQI(r, z,~-6)
29 10— 2Ky 2,~(1 4 6)) ~ 2K 5,2, ~5))
Tr:(ry2) = — 2pQzK (7, 2,(1 - §))
22ty 2} = — 2uQ [I(r, 2,—6) + 2I(r, 2,(1 — 6})]
where oo
I(r,z,8) = / EJo(r) sy (€a)e dE
a (2.20)

K(r,z,8) = /000 f“Jl(E'r)J(l_,.g)(Ea)e"ez d¢
Equations (2.19) and (2.20) thus give the non-zero displacement and stress compo-
nents for the linear elasticity problem. However, in many circumstances, the values
of displacements and stresses,which are of most interet, are on the surface of the

half-space. We shall now give the solutions on the surface z = 0. From Gradshteyn
and Ryzhik(1965) we note that

2°T((2+6+8)/2 S48 a—b 2
: I( 0 ) PT(z-f-(dea)/za))aL'")ﬁpl(2+2+83 5 1, %ﬁ'% ' r<a
r,Uy,8) =
2°T((248+8)/2)a’ ¥4 246+s 246+ 2
r((s_a)/z)r(2+agrz+6+- R(#5re, 55512.2 46, %), r>a
s F 6 8 8 —_ 1-2
&(1&2)2)1@ Fy(3tite 1=bde 9 1, r<a
K(r,0,8) = :

2°T((3+5-+8)/2)a’t® 34542 1464 2
T((1—-8—8)/2)T(246)r2to+s Fl( 2 . y T 2 2 32 + 67.’?.'!')7 T>a

23
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where F} is the hypergeometric function. Some typical components of the surface

solutions are written below.

vp(r,0) = —(1 — 27)QK (r,0 — (1 + §))
v.(r,0) = 2(1 — 9)QI(r,0, —(1 + §))
Tr2(r,0) = 0
722(r,0) = —2uQI(r,0,~8)
7or(r,0) = —2uQI(r,0,-8) + MQK( 0,—(1 +§6))
r00(r,0) = —4unQI(r,0,—8) — g‘il-;z—”)QK(r,o, ~(1+6))
2.3 The Second Order Solution.

In order to solve the second order problem we note that the boundary value
problem to be solved is now subproblem (II). We again use Papkovitch-Neuber

displacement solutions with

O =¢(r,z), Y1=v2=0, o3=1(r,2)

The displacement and stress components are now given as

_ 06,
wp(ry2) = B + 25-
we(r,2) =0 (2.21)
_0% %
wy(r,z) = Bz + z 35 (3 —4n)y
and
2 8
) = g + 25 - (-]
52 2 ‘
mi(nz) = 2[5+ Z Y- n)%/’; @ _"2 )(V2¢o + 2V2)]
2 2 (2.22)
Trelm2) = 2"[%—? T2 er < '?b = o )(Vz"’ + V)]
14p(ry 2) = 2,,,[3.?2 + 0% 9 6¢ (Vz ¢+ V2¢)]

ot e e Y- 2)

24
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On employing (2.22) into {2.3) we find

Vi =do, V¢ =1 (2.23)
where

““L 9 [T x 2(1 — /w ' oyt
¢°_472(1 n)z / X, (z,z)dz + 2(1 — 23) i Xz, z)dz — zX (7, 2)]

= Hrz)— o | X(r,z)d
b= Kl ) - 5 [ Xitriz)da
(2.24)
We again denote ¢ and 9 as
_ o0 _ 00
b= [ raensnd, o= [ rierialn )
0 0
and then from (2.39) we find
z E2Y
$=Ce %% 4% / g% / $o(€,21)e " dz1 dzy
0 0
where C is an arbitrary function of {. It then follows that
o
b= [ €aler)C +d)ee dg (2.25)
0
where o
#&a) = [ 0 [ hule )t dasdn
0 o '
Similarly the solution of (2.23), leads to
b= [ ERErD e it (2.26)
0

where

w6 = [ e [0 ” ole, e~ dzy doa

25
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and D is an arbitrary function of £. On employing (2.25) and (2.26) into (2.22) we

obtain
o (r,0) = 20 [ " ¢ 0(60)(CE + (1 — 20)DE] de
w2 (r,0) = 20 [ E(Er)iCE +2(1 - n)Dsld£+2"(1 ’;)qS( ,0)

On applying the boundary condition (2.6) we find

. 25 (1~ 20)m(6) ~ 201 = ha(6)]
A, (2.27)

D= if[hzm h(6)]

where

m© = [P0+ [ mXi(a0)deldr
(@ = [ X0 d

The displacements and stresses for the second order problem are thus given by

(2.28)

w,(r,2) = — fom E21,(6r)[C + Dz + £64 + £xlle=" de
,(r,2) = ] ~ edoien) ] Bl 21) + 20(E, 21)]e~7 diy} e d
4] 0

- jo " Io(Er)CE + (3 — 4n)D + Dt + 43 + (3 — 4n + )Ll dz
(2:29)

and

(75 2) = 2p jo EJ1(6r)(1 — 20)D + CE + D€ + &y + (1 — 2 + z€)dgle ™ d¢

—-2p /°° 'S J1(€"){/z[53(fa 21) + 290(€, z1)]e™ 4 dz; }ef* dE
0 0

7] - 2u(1:— n)[do{r, 2) + 23bo(r, 2)]
1‘::(7‘, z) — (1 _ 21})

w2 [ R - mD+ CE+Dat + 665 + (2 21+ Ex)gle de

—4p(1 - ’7)]0 EJO(&‘)[IO Po(é, z1)e™ 41 dzy]et d¢

26
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14(r,2) = g ldo(r, ) + 24(r, )

+2 / i E N1 (67)[C + Dz + ¢f + zple ™ dé
™ Jo

+2u /0°° €2 Jo(Er)[20D — C€ — Dz€ — £65 + (2 — z€)Pgle™ % dé

= dpn / ) £§Jo(ér)l / o€, )¢ daJet* de 230

447, 2) = s () + ¥ 2)
=2 [7 e n(en)io+ Det b5 + il dg
et [ EnenDe + egile ¢ dg
— [ €u(en)l [ Fuley e dnledg
The expressions for 7/, 7/, etc. can be written as

7::{7, 2)

5072 =4(1 — 29)(4a; — 2e3 + a1)I(r, 2, =8)[(1 - 20)(r, 2,1 — 8} + 2I(r,2,—6)]

—4(ay — as)[f-K(r,z, -8) — -(-1——-_;-?-1121{( r,z,—~(1 + §))][zI(r, 2,1 — §)
.- —K(r,z,-—6) ~(1-29)I(r,z,~6) + (1 = 2n) ~———K(r,z,—(1 + §))]

- (21 = n)K(r, 2, —b) + zK(ry 2,1 - é)')]2
)]

- a[I(ryz,~6) + zI(r,2,1 ~ 6)]2 o

(2.31)
i;g’z—z) =4(1 — 2n)z(4a; — 2a3 + ay)I(r,z,-8)K(r,2,1 - §)
+2a;(1 — 9)K(r,2,-8)[221(r,2,1 - &) — ;K(r,z, -8)
+ -(}-;r—?-ﬂ K(ryz,—(1+ 6))] + a 2K (r, z, —6)[-.—.EK(1', z,—8)
‘— 2(1 — 29)I{r,z,—9) + 72) ——LK(r,z,—(1 4+ 8))]

— 4(ay — a5)2K(r, 2,1 - 6)[—K(r, 2,—8) — g-———;gn—)K(r,z, ~(1+ )
i (2.32)
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with similar expressions for 75, and 7/, and where

% =(ay + 2az2){[z1(r,2,1 - §) — fK(r,z,—a) — (1 = 29)I(r,z,—6)
+ Q-_;L'I)K (7,2, (1 + ) + [~2K (7, 2,1 — 8) + 2(1 — ) K (r, 2, —6)]?

+ [;K(r, z,—8) — (_1 _1‘27’)

K(r,z,~(1+ &)

+ [2I{r, 2,1 — §) + (1 — 2n)I(r, z,—6)]?

+ [zK(r, 2,1 = 6) + 2(1 — ) K(r, 2z, —8))*}

+ (a1 + ag){—4((1 — 20)I(r,2,~6) + 2I(r,2,1 = §)][=(r, 2,1 - &)

~ (1= 29)I(r,2,—8)] — 422 K*(r, 2,1 — §)
(1-

2D K (5,2, ~(1 + S)[=(r, 2,1 — 6)

+42K(r,2,-6) -
— 2Ky 2,-8) — (1= 2)(ry2,—8) + L P K, (1 4 )

1+ 8(1 — 27)(6as + 2a3 — a; — 2a)I%(r, z, ~6)
(2.33)

Equations (2.29), (2.30), (2.19) and (2.20) together with the expressions for 7;; con-
stitufe the solutions of the second order problem. On the surface z = 0 these

solutions can be written as

wnr,0) = —of0-2) [ X0+ [ poXila,0)dyKs(e) do
—~2(1-7) /D°° zX,(2,0)Ks(z) dz] -
w,(r,0) = —-2%[(1 - 2n) /0°° zX, . (z,0)Ka(z) dz

—21-n) [ eXiue0)+ [ mXilo,0)duKaa) da
0 0 .
Tv'-'z(rv 0) = —X:,,.(T,O) = "'[CBI(T:Oa _S)K(T! 03_6)

+ ﬁr’-K(r, 0,-8)K(r,0,~(1 + 8))]
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7 (7,0} = = X! _(r,0) = —[ceI*(r,0,-8) - E;ll(r, 0,—8)K(r,0,—(1 + 8))

+ ;%Kz(r,(l, —(1 + 8)) + cr0K?(r,0,-8)]

ot (r0) = 2O =M 6 5K (r,0,~(1 4 6))

r
7l.(r,0) = 2(1 - 27;)2Q2{(a1 + 4a; + 1244 + 48a4)12(r, 0, ~8)
_a + 2a3 — 2a3 — 2as

r

2a2 — 2a3 — 2
Mt T K, 0,~(1+ )

+ 8(1 — n)*(a1 + 4a2)Q* K *(r, 0, ~9)

I(r,0,-8)K(r,0,—(1 + 8))

with similar expressions for 7y, and 7g,. Also

2
po X! (r,0) = %‘-[I(r, 0,—8) — =K (r,0,~(1 + &)
+ %K(r, 0,1 — 8)K(r,0, ~(1 + 8)) + esI(r,0,—8)K(r,0,1 — &)

+ced(r,0,1 — §)K(r,0,~8) + ‘;iKZ(r, 0, —8)

where c;; are constants and listed in the appendix A4 and the kernel functions

are given by .

) z<L<T
K1($)={

0, z>r
{ LIF()- B3, =<
Kz(x) =

LIFE) - B 2>

r

0, z<r
K3(3)={

2, z>r
%F(%), z<r
Ky(z) = { .
r
‘ ;F(;), z>r
where F(z) = fo%(l — z2sin? 1)~ % dr and E(z) = fO%(l — z%5in® 7)3 dr are the

complete elliptic integrals of the first and second kind, respectively.
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2.4 Illustrations.

It 18 now of some interest to write down the displacement and stress components
for specific values of §.

We present first some cases for linear elasticity theory.

(a) Linear Case.

(?)6=- -;-,this case is equivalent to the flat-ended punch problem. The solutions

on the surface z = 0 are in agreement with Sneddon(1965).

Forr<a
_ _(Q-29)P T
‘U,-(T, 0) - 4,”#0‘ a+ ,——-——*az — 2
1—7)P
v:('l‘, 0) = %
Tr:(r,0) =0
. ‘ P 1 | (2.34a)
'rz:('r, ) = _% /2 — 22
P 1 1-2n)P 1
T"(r’0)=_2na¢z—~§+( 2 7 N
a‘—r ar a<-vac—r7r
; (rO)—-nP 1 _(1-2q9)P 1
' AR 2na /a2 — 2 . 2rr a4+ a? — r2
Forr > a 1 _9mp
v,(r,0) = (4;7’_)__
_ TG
_(d-qP . a
v:(r,0) = Smna arcsxp(r)
Tre(r,0) =0
(2.34b)
T:2(r,0) =0
_(1-29)P
ot = O30
_ (1-2n)P
7o0(r,0) = 2nr

(i]) § = 0, corresponds to uniformly distributed load. The solutions on the

surface z = 0 are
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Forr<a

(2.35a)

Forr>a

_(1-2q)P
drpr

n(r,0) = 2D gl -
T2 (r,0) = 0

T:2(7,0) = 0

1—2n)P
T,.,-(‘l‘, 0) = (—“27;2'——

(1-29)P
2mr?

vp(7,0) =

—% R

(2.35b)

7o0(r,0) =

(i1é) § = J,this case corresponds to the punch in the form of a paraboloid of

revolution. The solutions on the surface z = 0 are (cf. Sneddon(1965)):

Forr<a

(1-2p)P 1 —(1 - )

vr(r,0) = - 4mp T
3(1—-n)P rZ
v(r,0) = %[l ~ 53l
31
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Tpe(r,0) =0

oy 3PV
:z(r ) 27“’13
o — 3pvaZ — 12 (1_27’)P[1_(1_i)%] (2.36a)
Ter(r0) = - 2na® 2772 a?
3PvVa? —72 (1 -2n)P r? 3
7o0(r,0) = — wad T opp? A-Q- a_z)z}
Forr > a
(1= 2n)P
or(r,0) = dnpr
v,(r,0) = (871'1“1) [(2- —)arcsm( )+ \/ — a?]
mre(nfy =0 (2.36b)
T2:(70) =0
_(@-29)P
7er(rs0) = 2nr?
1-29)P
Toa(r,0) = o R
(vi) § = § In this case we find
Forr<a
2n)P T2 s
up(r,0) = (Tw-;)*[ - (==
o0y = Q=P 3t
B 32ua?\/m oy
T (r,0) =0
5P o2 ; (2.37a)
7':;(7‘, 0) = —%‘2‘(1 - ;
5P r? s (1 2n)P 2 5
(0 = g - @) e =)
5P 1‘2 3 (1 -27])P T .5
7o0(r0) = Toma?t 5)2 272 t-Q- =
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Forr > a

_ (1-29)P
ur(r,0) = — 4mpr
_ 151 —p)P r* —ad® 3(%2—0.2)21' o a
v:(r,0) = 16wpa?r [ 2 t 2a2 g ey
R aGars
4o’ 2.37b)
Trz(r,0) =0 (2.
T:2(r,0) =0
(1-2n)P
morln0) = S
_(1-29)P
TOO(T) 0) 27['1‘2

Similarly, for 6§ = 5/2,7/2,9/2,- -+, we can g2t the other exact solutions.

(v) Point Load: By letting a tend to zero we obtain the solutions for the case of

the point load. On noting that:

P oo
3 - (1+6+3) —€z
lim QI(r,2,9) = 4w/0 3 Jo(§r)e™>" d€

P o0
. _ (1+6+448) -z
EIB)QK(’"’Z,‘S) = 4,”“ A E Jl(ﬁr)e d£

and
2L 22 — it
/ Ta(er)etdg = ;%jj
we obtain
( z)__P[1~2n)(m—z)__ r? ]
ve\T,2) = 471,“ rm ] W
vilryz) =~ A2 T

Vs Ao

33
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3P2%r

1',.:(’1’,2) = =7

oam(r? + 22)z

P 323
O T Ay 2.3%)
T(Tz)=-£~1_2n(1+ 2 )_ 31'22‘ ] (-
e 2r" 72 Vritz2 (24 22)%

1-23)P z 1 z
7oo(r, z) = ( 27!'1]) [(1‘2 + zz)% - 1‘_2(1 - ﬁ)]

(b) Second Order Case.

In this case it suffices to give solutions for one value of §, since computations be-

come quite involved, and we select § = 3. We first need to calculate the expressions

!

i; and these are: forr < a

for 7

om0 = 2T B ey o Ty

2 4 12 48
i, (r0)=2(1- 2”7)2Q2{ (a1 + 4az ;l;ag a3 + 48a4) (a? = 72)
2(ay + 2a; + 2a3 + 2a5) 2 2,
B -—=)-Ul-— 2.39
e d1-S-a-5p (239
2(0'1 + 2‘12 + 203 -+ 20,5) rz 312
* grrt -0 =)
—_ a2
+ (1 77) t(]g’l + 4a2)Q21‘2

with similar expressions for 7,, and 75, and

forr>a
41 -1 —-2n)aae@® r . @’ a?
o0 = L2090 7 g2y - (1 S
— 99)? — 20 — '
o (r0) = 4(1 - 2n)%(a, ;ﬁi? ay —2as) 0? (2.40)
4(1 '-17)2((11 +402)Q2 r . . a . a.2 112
+ —~ [a. a.rcsm(r) (1 = )2]

with similar expressions for 7/..(r,0) and 7‘;99(1', 0), where @ = 3P/(4\/} 2 ua®?).
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The solutions for the second order elastic problem turn out to be: for r <L a

1-2 4 —m? T g, 7
w,.(r,0)=——ﬂz(c1z+ ) 611)E+(013+T)F

VoI -2
+c;+cz[r21na+ Z z + a® - av/a? —1?]
T

2(cr + ¢9) 0° — (a® — )3 + @ (a?-0?)F 5_“]}
T Onr [ a? r? 2 2
+ 1- n{csfa(;‘) _ c—,-I.;(;') + cgar? Is(r)

7} 2ma 6ra 2r

C7aIe(?‘) C7GI7(T‘)}

6 Jnr2

1-2y (4L +7)e; . 3ce + o1 (a? —r2)3

w(r0) = T e
cr Va2 — r? a I
6 a a+ VaZ —rt

1-— /] 2(C15 4 deyy — 71’2611) Z‘_ 7(614 -+ Clﬁ) ﬁ
+ @ { ™ Bl )+ 3r ad
4(3 C 4c, +¢ Ilo('l‘)
+ ._(,.;1.2_?_)[I9(r)+flz(r)] ( ; 5 2)[

-— .8(—92%5;1[0111(7‘) + I14(7)]

+

(2.41)

+ +In

+ TI13(7‘)]

+ 2t o) e s ge)n(l) 4 9 - )

4(61 + 69)115(1‘) - 86141'I16('P) 8611TI17(1‘)}
+ 9“21.3 3

PaE —12  c¢qla® — (a® —r?)?
' (r,0) = cg™V n 7 (3 )%]
2a3 6as3r
3
Voo des( =) 2 (e — (@ = r)iP
Tzz(ra 0) = - - - On aSrt
2co a*v/aZ —r?2 — (a® —1r%)?  mweyer?
3 adr? 8a?

(2.42)

with similar expressions for 7/5.(r,0) and 7g(r,0).
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for r > a:

1-29 a ¢ +ca’ c14
wp(r,0) = —~ {cm; plaro r3 [ + arcsm —]
2¢14 TVT? —a*arcsin T 8eyy ('r2 - az) 2 arcsin £
32 a? 32 a’r
2c10 + 4¢y4 + Scs V72 — a?arcsin 2 3 20113 aresin? 2}
127 T a r
+ 1~ n{caIa(r) erly(r) | acyIz(r) ac7I7('r)}
M 2mad 6mrad 32 3nr2
' (1 -27n)acs Vr* —a®  arcsin$
w(r,0) = = | o2 - o + Ir(r)]
1—7 2cys +4cy; —72ey1), 5., 0 2 o2y @
* m { war [ r )+ (a" = r)F( T ) (2.43)
+ 2(9,,—*)[( +4r?)(a? - P)F(2) + (4r* + 0?17 B(S)]
4(361 4(61 + Cz) (901 + c9)a
QTI s(e) + ——=—"To(a) - STE I1;(a)
4(c; + ¢ 8c 8¢
+ "—g_lé—g_i-‘[ls(r) - == —To(r) - nIzo(")
wir
4(c; + ¢ 8c T 8c
+ 20 pa) — 2 o) - S L))
" ¢y r% arcsin & — a\/'r2 —a? .
'rr:('ra 0) - '"g_ 3
‘ 2c'9a3‘ C10 (T . a rZ — g2
H - _ 2100 —-— 2
72:(r0) Ot 2mata oo r ]

with similar expressions for 7),.(r,0) and 7,(r,0) and where I; are‘ listed in the
Appendix Az and ¢;; are listed in the appendix A,.

In comparision to the linear solution given by (2.37) we note that expressions
for displacement and stress in-the second order theory are very complicated. In
particular, the simple paraboloidal shape of linear elasticity, (2.37); is completely
changed to a new form as given by (2.42); and (2.43);. Similarly, the shape of the
deformed boundary, on z =:O, as compared to the linear theory, (2.37),, again is

considerably changed in the second order theory (¢f.(2.41)2 and (2.43),).
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2.5 Reduction to the Incompressible Case.

We now follow the limit process introduced by Rivlin(1953) to obtain results for
isotropic incompressible materials. First we require a» and e3 tend to infinity in

such a manner that (a3 — 2a;) remains finite. Moreover if we set

ay = —(Cy + C2)
(2.44)
as = —(C1 + 2C3)
then the strain energy function W takes the Mooney’s form
W = C](Il ha 3) + Cz(Iz - 3) (245)

where C; and C, are constants. On employing the above limiting process and

setting n = % we find that complete second order solution, for this particular case,

simplifies to

Forr <a
ur(,0) =~ B0 ¢ a2
Cp2 2 2
w.(r0) = —3§£ 1 o]~ T g
_ 131‘I17('l‘)}
.1
Forr>a

u(r,0) = -2

2mad
3P r? . a r? — q?
u,(r,0) = ~%%a 1r[( — — ) arcsin — + -—a-——]
o 31(2 \ (2.46)
1r
- Jp2B(2) + (a

_ 12[20(7‘) _ 127‘[17((2)}

wlar

The stresses are given by
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Forr<a

3PVa? -1 2a;aQ?rIs(r) _ 8a3 Q% Ina(r)

trr(r,0) = — 3
27a i Tar
4 dm Q*(3Ls(r) = La(r))r  201Q*(I5(r) + 6151 (r))
Ta wadr
3Pva? —r?
t:x(r,0) = T v
2a;Q%*rva? — r?
tro(r,0) = - =3
" 0) _ 3P‘\/ a? — 1‘2 + 7[61Q21'2 + 2a1Q2(1'3(1') + 6.[21(1’))
00(r;0) = — 2rad 4qa8 wadr
+ 40,1 Q2T(3I-23(1‘) - I24(1‘)) + 201Q2?15(T) _ 40.1Q2122(7‘)
Ta T Tar ..
Forr>a

2a1Q2(12I21(a) - I24(a)) _ 8a1Q2I22(a)

tre(r,0) =

wadr Tar
tzz('r, 0) =0
bre(r,0) = 0 (2.47)

2 _ a2 2
t94(r,0) = @@ [f'. arcsin ZYT_ "¢ R+ 2a:Q (Ia(ag + 6I21(a)
dnr "a r T P
_ 4a,Q* Is(r)
war

It is apparent that the expressions in the case of incompressible material are much -
simpler as compa.red‘t.o those for compressible material. In particular we note that
while there is significant cha.nge in the displacement comf)onents, the second order
solution has no effect on the normal stress £,;, on z = 0, in the incompressible
case. It should be remarked that Rivlin’s method cannot be applied, as used in
this thesis, by starting with (2.45). Known solutions for compressible material,
however, can be specialized for incompressible material by the appropriate limiting

process as illustrated above.
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2.6 Numerical Results.

In order to show the second order effect, we now present some numerical solu-
tions. In the following numerical calculations, the Ieading‘term is the solution to
be found in linear elasticity and the remaining term represents the sccond order
solution. We are interested in the z-direction displacement and stress.

For compressible material,the strain invariants, I, I; and I3, can be written as

fl = 3+2Crr

TZ =3 + 4err + 2(erreaa - ersers)

) (2.48)
I3 = det(5,.8 + 28,-8)

=1+ 2eqr+ 2(erresa - ersers) +8 det(era)

where
1 du, Ou, Oux a'u.k)
¢rs = 9\8s, T Bz, © Oz, Oz,

Using three other strain invariants, IT, I3 and I3, as constructed by Murnaghan(1937)

we can rewrite [1, I, I; as
I =3+2I7
I =3+4I +4I; (2.49)
Iy =1+42I7 +41; + 813

where

€rr€ss — Erg€
~ rrCss ratra *
II'=ey, In= , I3 = det(er,)

2
The five elastic coefficients used by Murnaghan(1937) are A, g,I,m,n. The rela-
tionship between Murnaghan’s and Rivlin’s coeflicients is given by Truesdell and

Noll(1965) as _
ay = —£/2, a2 ={(A+2p)/8
(2.50)
a3=m+p, as=-p/3+l, as=n—p
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Foux(1962) gives following experimental data for iron

i = 8.26 x 10%kg/mm?

(2.51)
K =X+ 21/3 =17.0 x 10%kg/mm?
Yp=-16, m/p=-101, nfp=-22.7 (2.52)
Using (2.50),(2.51) and (2.52) we find
1 17
ar/p=-0.5, afp= 8 + 595’ azfp=-9.1
1
agfpp=—(1.6+ 5), as/p = —23.7 (2.53)
and
862
7 2963

Using above values and denoting 7 = r/a we get following numerical results for the

displacement and the normal stress in the z-direction:

7 0.0 0.2 0.4 0.5
u./a  0.2659 +0.9217¢2  0.2606¢ + 1.473062  0.2446¢ + 1.5632¢2  0.2327¢ + 1.6842¢2
t../p —0.4775¢ + 11453 —0.4678¢ + 0.907262 —0.4376¢ + 0.7695¢2 —0.4135¢ + 0.6647¢2

=3

0.8 0.85 : 1.0-0 1.0+4+0
w;/a _ D.1808¢ + 2.4798¢2  0.1698¢ + 2.6887¢2  0.1330¢ + 5.0624¢? 0.1330¢ + 1.1170¢2
t../p —0.2865¢ + 0.1805¢> —0.2515¢ + 0.0658¢ ~0.6250¢? 0.7832¢?

2.0 80 20.0 100

2t

ws/a  0.0580¢ + 0.7289¢2 0.0141¢ + 0.1772¢?  0.0056€ + 0.0716¢2  0.0011¢ 4 0.0149¢2
tes/pt 0.0783¢2 0.0003¢2 0.0 0.0
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where € = P/(pa?)

From these tables we find that for compressible materials the second order effect

is to enlarge z-direction displacement. The second order stress hashowcves, its
]

direction opposite to the direction of the linear stress, and therefore it makes the

total stress smaller in magnitude than the linear stress. We also find that the second

order displacement and stress possess discontinuity at » = a.

The same cuiculations have been made for an incompressible material, such as a

rubber-like material. In this case, we have

ay = —(C1 + Ca),

as = —(Cy + 2C»)

and from the experiments of Haines and Wilson(1979), we have C; = 0.179 and

C> = 0.009. These values give the following tables

T
u./a

tzz'/l"

||

u./a

tz:/p

3

- uzfa

tu/l"

h

0.0
0.1875¢ + 0.0975¢
—0.4775¢

0.8
0.1275¢ + 0.0815¢2
—0.2865¢

2.0
0.0409¢ + 0.0183¢
0.0

0.2
0.1837¢ + 0.0886¢2
—0.4678¢

0.85
0.1198¢ 4 0.0805¢2
—0.2515¢

8.0
0.0100¢ + 0.0051<2
0.0

41

0.4 0.5
0.1725¢ + 0.0872¢*  0.1641¢ + 0.0862¢*
—0.4376¢ —0.4135¢
1.0-0 1.0+40
0.0938¢ + 0.0787¢2  0.0938¢ + 0.0442¢2
0.0 0.0
20.0 100.0
0.0040¢ + 0.0021¢2  0.0008¢ + 0.0004¢2
0.0 6.0
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where € = P/(ja?)

From the above tables we note that for incompressible material the second order
effect also increases the z-direction displacement. The magnitude of increase is,
however, much smaller as compared to the compressible case. In the incompressible
case, there is no effect of the second order elasticity in the z-direction normal stress,
but it affects the 1, and tgg stress components. Also, displacement is not continuous
at r =a.

Finally, we remark that for both compressible and incompressible materials, the
parameter € detérmines the magnitude of the seéond order elastic effect, that is, the
more the total appplied force P the larger the second order effect and the greater

- the elastic constant g the smaller the second order effect.
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CHAPTER III

SECOND ORDER EFFECTS IN AN ELASTIC HALF-SPACE
ACTED UPON BY A NON-UNIFORM SHEAR LOAD

3.1 Statement of the Problem.

In this Chapter we consider an elastic half-space in which a non-uniform shear
load, of total magnitude P, is acting over a circle of radius ¢ in the x-direction(see
Fig.2). In classical elasticity, this problem of stress distribution within an elastic
half-space when it is deformed by the uniform tangential force to the surface scems
to have been considered first by Cerruti(1882). An alternative solution to this
problem, using Hankel transform method, was also given by Muki(1960). Here
we consider the second order problem with non-uniform tangential load. Again,
we choose cylindrical polar coordinates (r,8, z) such that the load is acting in the

plane z = 0. The boundary conditions are

t,.=0
1+ 6)P
trz = ( 2(1-26)( ? rz)aH(a' —T)COSG (31)
14 68)P .
tg: = ( 2(1_26)( 2~ H(a—r)sing

where constant § > —1. We assume that there are no body forces. For the lin-
car solutions and second order solutions the problem can also be split into two
subproblems:

(I) The Linear Solution: solve

Orey (1019 | OTrs | Trr —7Tog

 t:58 T =0
g o
43
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subject to
T:zlz:ﬂ =0

_(+9p

a2 — 2}
1+ 6)P . V
T9z|z=0 = __—Eraz(1'25) (a®> —7?)*H(a — 7)sin

(IT) The Second Order Solution: solve

ol 10t),  Otl, T —Thp .
or ty r Of et dz + T TpoXr =0
oty 101y O1, 2
B e s
ar), 107, a‘r;': 1, .
g Tr o0 T By TrretaX:=0
subject to ‘ ,
Toelemo = =X, Tiile=o = =X, 79 lim0 = ~ X} (3.5)

where body forces and surface tractions are listed in the Appendix A;.
3.2 The Linear Solution.

For solving the subproblem (I) we use Muki’s displacement solution
1
v= 5{2(1 —7)V2G -V(VeG)+V x A} (3.6)

A V—A.A . . . . « > . . .
where G is a biharmonic vector and A is a harmonic vector."Muki proposed single

z.components for both G and A
G = (0,0,G.(r, 6,2)), A =(0,0,A.(r,8,2)) (3.7

We select G.{r,6,2) = ¢(r,z)cos and A.(r,0,2z) = ¥(r,z)sin6. Then the dis-

placement components (v, vg,v;) bocome

1, 8¢
Ur = 2;1.[ Orfz + ]cosG
1.,18¢ - 31,1) ) .
vg = 5;{;5 - 25] sin (3.8)
2 &y
.= E[2(1 - )Vi¢ — 55 > jcosf
44
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which satisfy (3.2) ,provided ¢(r, z) and ¥(r, z) satisfy, respectively,

9 198 1 0?
4 — — — — gy — e e 2 = .
vlqb_(@rz-}-rar 1'2_1_8:5"-’)(1s 0 (3.9)
o? 14 1
2.0 = ——— Y = 3.10
Vi (6r2 + ror r? t+ 9z =0 ( )

The stress field corresponding to displacement field (3.8) can be written as

24 _ 82
S [a(ﬂvlgz E?) + (_3_%? - g."ﬁ ] cos 8
O(nVio— 132+ &) 26«» 2¢
oo = [ Oz “\roar Fz e
Tex = [8((2 n)gz '5?” ] cos @
& 9
roe = (21 -n)Vig - S 0) - 2¥ izl

o -nVi -5 10

Trz = | —]cos @
or r Oz
pt oy (3.11)
Tro = [ 5 6r —( 57 55 )] sin 4
Use of (3.3) leads to .
8((2 — n)Vig - "'—’;?) _
[ 0z lemo = 0‘
¢, & 1+68)P
Fla-nvie- 28 - L - Emiglls)( P Y H-r)  (312)
- z 3 6)P
A0V §h 10 | OEOP gy

We now denote by o
b= [ rhgnedr

oo _
¥= [ rhene s
0 ,
and take the first order Hankel transforms of (3.9) and (3.10), respectively, to
.obta.in ordinary differntial equations for q;(f,z) and ¥(¢,2). Useful solution of

45
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these differential equations for our purpose are

B(€,2) = (Ay + Azbz)e™ %"

P(€,2) = Are™¢

(3.13)

where Aj, Az, A3 are arbitrary functions of £. On taking the first order Hankel
transform of (3.12);, the second order Hankel transform of (3.12)2 +(3.12); and the
zero order Hankel transform of (3.12); — (3.12); and solving the resulting equations
for Al N Az, A3 we ﬁnd

Ay = _T Ji45(at)

2 g3+
Az — __12_1_ (1 — 22‘)111;-6(0'{) (314)
T Jips)a
4s = 5—12365)

where T' = 2115(1 4 §)I'(1 + §)P/(mal+?),

We now take the following Hankel transforms of the stress and displacement func-
tions: H, ['rz:/ cos 6], Ha[ry:/ cos 8+74:/ sin 8], Holr:/ cos §—75,/ sin 0], Hy[v,[ cos 6+
ve/ sinf], Hp[v,/ (':.os 0—ve/ sin 6], Hy[r,./ cos 8-+7g¢/ sin 8],H; [1r/ cos 04+2pv,./(r cos 8)+
2uvg /{r sin 0)] and then using (3.13) and (3.14) on inverting the resulting equations

we obtain

o= =2 IO, ~(1+8),2) ~uL(2 ~(1 +6),2) + Z1(0,-5,2)
- %L(2, -6, z)] cos 8

0 = (2= 1)E0,~(1+8),2) ~ 1L, —(1+8),5) ~ SL(0,~5,2)
— gL(2, —8,z)]siné

;): = —42“[(1 —2mL(1,—(1 4+ 8),2) + zL(l,»ﬁ,zj] cos 6

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Top = T[gL(z, —(1+8),2)+ %L(z, _8,2)+ L(1,—6,2) — 5‘2-1;(0, 6,2
- %L(l,l — 6,z)] cos 8
Top = T[—gL(2, —(1+8),2) - g;L(z, ~8,z) — 39L(1, -8, z)| cos 6
Tes = T[—;—L(l,l _ §,2)] cos 8 (3.15)
Ty = T[—%L(O, —§,z) + EL(O, 1-8,z) — -Z—L(2, 1—8,z)) cos
Tor = T[%L(O,-ﬂs,z) - Z001-6,2)~ SL(2,1-6,5)]sing
oo = T(LL(2, ~(1 + 6),2) ~ = L(2=6,2) - %L(l, _5,2)]sin 6
where L(n, s, z) is defined as
Lin,s,z) = /0 " et (er) T s(Ea)et dr (3.16)

Equations (3.15) and (3.16) give the displacement and stress components for the

linear elasticity problem.
We. here give the surface sol:tions. By denoting L(n,s) for L(n,s,0) we can
write the linear displacement and stress components as:
or =~ (2= L0, ~(1+6) + 12, =L+ 8) cont
vg = %[(2 — ) L{0,—(1 + 8)) — nL(2,—(1 + 6))]sin b
v, = -«éu — 2q)L(1, —(1 + 8)) cos § |
Tor = T[’;’L(z,—(l 1+ 8)) + L(1, —8)) cos
Tog = —T[grL(2, ~(1+ 6)) + 3nL(1,~8)] cos (3.17)
Tz =0
reo = T(LL(2,~(1+ ) ~ 5L(1, ~8)lsin®
Try = —-12—1L(0, —b)cos @

Ty = f—12-'-L(0, —6)sin 6

47
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3.3 The Second Order Solution.

In order to solve the second order problem we are required to solve the sub-

problem (ITI). For the present, the additional forces and surface tractions may be

written as
poXl = Fi(r,2) + £2(r,2) cos 20
po Xy = fo(r,z)cos@sinb (3.18)
ngi = le(r’ z) + ff(r$z) cos 26

and

X’:.' =-X,.(rz)— X:i,.(r, z) cos 20
X;; = —X,¢(r,z) cos@sinf (3.19)
X’: = ~X,.(r,2) - X?,(r,2) cos 20

We select displacement vector to be Garlerkin’s solution plus an irrotational term

w= 2%{2(1 —)V2G - V(V e G) +V¥}

where

G = {Gi(r, z) cos 8,Ga(r, z) sin 0, G3(r, z) cos 20 + Gy(r, 2)}

(3.20)
¥ = (1 — 29)p®(r,z) cos26
With this choice, the displacement components become
8G, &G, &G
w. = 21 — 2 2 2q o2 960 ' 3
2pw, = 2(1 — 9)[ViG; cos® § + VG, sin® 6] 5 " ords  5rds 260
+(1-— 21));:.(%1) cos 26
2uwg = 2(1 - )[VZG, — V2Gy] cos fsin 6 — 109Gy + 209Gy sin 26
r 08 r Oz
-(1- 2n)p? sin 26
9Gy 3G, 9?G;
2uw. = =5 +[2(1 — p)VEG, - W] +[2(1 - 9)V3iG, — W] cos 26 }«; -
+(1- 21]);1.6—@ cos 26
0z -
N (3.21)
48
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where

1 3G1 G;  O0G, % 16_6'1- _ ﬂ N G, @G,
Go = “or +T+T+ 2[61‘ T Or r

32 18 a? 4 & )
or? tr rdr 12 822
The stresses are given by

n [V§G1 + v%Gz] B[Vf - V%Gg] . _ 62Gn
Trr = 29 o +(L+7) { or + or cos 20 or?

V3G, — —;1] 0[1)V§G3 ~ —:“BSS ]
+ c
oz 0z

5°®
+ e V3@ + (1 - 2m)p5 7] cos 26

V3G, +V2G2 V2G2 ViG, ) laGn lazGo
[ cos 26| - r Or +r2 062

(3.22)
Vi=(33

os 26

Tee—2go+ (1+7

2 1264 207 1
;. 9Vs G;z r o] a[anGs s c0s 20
2 (1 —25) _a_q’ 49
+ [p. V3® + (31- " )| cos 26
2 82 .
o1, @G AC-n)ViGi - 58 AC-nViG - 58 .
T2 = dz2 0z 0z
2 ) P
+ | pnV32 + (1 = 2n)po— | cos
1- n a[V¥G1 + V’;’Gz] 6[V§G1 - V?Gg] _ 32G0
=g [ 32 + Bz cos26| = 55z
e
3[(1 TI)V;G4 — 85 N o1 - ﬂ)VgGs - %2 cos 20
T
ped e
+{1-2n)p 575 cos 2 3 -
2 - 26,
Ty =(1- n)a[Vsz(; ViG] cos @ sin 6 + - 2900, - az + Gl cos fsiné
z
4 021G, . 4(1 — 2n)p 0
- [(1 - n)ViG,; — _6—22_] cos@sinf — — % cos fsind
V3G, - ViG, 9[ViG, — ViG,] _18%Go , 1 9G,
Tro = (1- )[ r + ar cosbsind — 556 T 27 29
Ga _ G
46[—;1; -E;a]-cosﬂsinﬁ + w [f 3(11.’] cosfsin 8
r 2

(3.23)

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where

_ 9lViG: + ViGyl | ViG: - ViG,

" 2 or 2 2 ’ 2 (3.24)
+ {B[V1G1a: V1G2] + lez _lel}Cos29
r

On substituting (3.18) and (3.23) into (3.4} and rearranging the terms we find

VG + G2) = —2f; (3-25)
-2 = = = 3.26
or TV,@ 2 (3.26)

—92f1 _ (4/ 2
v‘llG — fo zfr 2(4IT)V2@ (3.27)
ViGy = ~f} (3.28)

2

V3Ga + azzq: = ~j? (3.29)

We now take the third order Hankel transform of both sides of equation (3.26) and

obtain

d? oz 1 [ 2f 2+ fo . a |
—_— = = —=r _2dr= 3.30
(- 8= [ raendHar 2o (3.30)
where
® =] rJ2(Er)B(¢,7) dr
0
From (3.30) we find that appropriate solution of (3.26) is
B = Hy[(A +¢")e=536 — 1] (3.31)
where
o= [ e [T sen)t dndy
0 0
s .
and A is an arbitrary function of {. From equation (3.27), we find

o oo —9f1 _ 2
(di;f — Y’ H[Gh] = /0 rJi(ér) fo= 2 2(4/7')V2‘I’ dr £ a(é2)  (3.32)
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The appropriate solution of (3.27) is given as

G: = H1[(Ar€z+ gD)e 85,6 = 7] (3.33)

where

x <2
gi‘(é,z)=21—E /0 ¢ /0 (222 — 2 — 22)g1 (€, 21)e™8" dzy dzp (3.34)

and A; is arbitrary function of £.

In a similar manner it can be shown that

Gy = Hy[(Az€z + g3)e™ %€ — 7]
Gs = Hy[(Aséz + g3)e ;€ — 7] (3.35)

Gs = Ho[(Aslz +g3)e™ 1€ > 7

where Az, Az, Ay are arbitrary functions of £, aud

z 22 ’
g:i(§,2) = 2l£] et / (222 — 2z — z1)gi(€, 21 )e " dzy dzp i =2,3,4 (3.36)
. 0 0 .

o ~2f} — fo + (4/r)VED
nln= [ raen R VR,

o 2
wen)=- [ raenis+ G (337

g(62) = — [o " r(en)fl dr

After having determined the solutions for ®,G, to G4, we now need to determine
the arbitrary functions A, A; to A4. This is accomplished by substituting the dis-

piacement components in the stress components and then using boundary condition
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(3.5). After considerable algebraic manipulations we get

Ao 1 (97— 8n%)hs (3~ 4mha +(1+ 29— 4172)hs]
T (1 - 2n)pé? [4 -5+ 297 2(4 — 59 + 27?)
4L (1 —20)hy +2qhs (1 —n)he + ha + 2ﬂh5]
e 3-49 2(4 - 59 + 2?)
A = 1 [(1=2n)hi +20hs (1 -7k +hs + 277’15] (3.38)
€ 3-4yp 2(4 - 57+ 29?)
Ay = 1741 -nhs  (1—-29)hy -3 - 2’7)"'2]
£ [4-57+ 22 2(4 — 57 + 21?)
4 = (3 - 2p)hs = 2(1 — )by
(3 —4n)¢®
where

hy = fﬂ " rhi(en) X2, dr

hy = /0 mrJg(ﬁr)(2Xfr + X,6)dr

hs = /:O rJi(€r)(2X2, — X, ) dr | - (8.39)
hy = /ﬂ ” rdo(€r) X1, dr

hs = / rIa(E)X2, dr — p(1 = )é(€,0)

With the solutions for G and ¥ known we can write down the complete second

order solutions from equations (3.21) to (3.24).

On the surface of the half-space,the second order displacement and stress com-
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ponents can be written as

2uw, = =2(1 - n)/ X} K11(0,z)dz + (1 - 21;)/ X! Kio(0,2) dz+
0 0

cos 26 oo 2
4— 5,7 + 22 {/ z(2X2, 4+ Xuo)l(1 + 7 = 29°)K13(0,2) + ‘;?‘Kas(—l,:n)] dz

2(1 — 29)?
T

- / 2(2X2. — X,6)i2(1 — 7)2K11(0,2) + Ko (—1,2)] dz

ee 2(4 + 59 — 82
- [ exi L+ o+ 41 Kra(0,0) + T ) e
0

o« 2
+u(l— n)/ o +f9[(4+977+112)K1s( 1,z)
+2(4+5:1 87

D) Kps(=2,2)] dz}

2y = e { [ (@ - Xua)l = 0P Kas(0,2) - = n(-1,0)] do
+f°°z(2x ~ Xu)[(1 = D) Kn1(0,2) atsom Kon(~1,)] d

4—-13 8
N / 2X2,[2n(1 — n)K1(0, z)+#1{22(-1,z)}dz

(1~ 1) [ oot - mEa(-1,) + IS e o, ,,.)]d,,}

o0 o0
2uw, = (1 - 217)/ :z:XE;,.Km(O, z)dz —2(1 - 7})/ zX,l,zKog(O,z) dx
0

0

26 10 - 21n + 89 [
+4—050;+2,,z{ o fo “’X3r+Xuo)K23(0,z)dx}

+ (57] - 67]2) [ $(2X3,. - ng)Kn(O, 2) dz (3.40)
0 * =

- (8 —34n+ 247)2)[‘/.00 X2 Kn(o z) dz
0
0 2
- ;L(l - 17)‘/0 :Bfrszo.Kza(—l,z) d:c]
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o= 3X}. _ 2(1 - 2n) /°° d(g;Xir)
rr 34y 3 — 47 A iz
1.3+2p—47% [ _, _4(1__,7)/00 . ;
;[W—"—3_47’ A zX,.K10(0,z) dz 34 J, zX, . K11(0,2) dz]

.. 26 o0
ﬁm {(1 + on — 3772)[4/ (2XZ, — X,6)Ko2(0,z) dz
- 0

oc 2
_ /0 d(x(zx,:i,: Xo)) . (0, 5) do]

KOO(O, :B) dx'{'

00 2 —.X
—2(1—7) / d=(2X v v0)) Ko (0, 2) di + (—4 4+ 7+ 67) [~ X2,
0

oo o of2 N
+ 2/ X3:K01(0,Z)dz - p,(l - 1},)/ 2 fr2 f8K03
¢ 0

1 [ '
+1 j 2(2X2, + X,)[(7 — 30 + 812} K1a(0, 3) +
0

(0,z) dz]

B gy (-1,2) do

r

1 /= 12(1 —
+- / 2(2X2 — X,0)[2(1 — 49 + 7*)K11(0,2) + (fn)Kn(—l,z)] dz

_ 2
6(4—13n4 8y )Kzg(—l,z)] de
T

[}
+1 [ X2 [(16 - 319+ 877) Ka(0,2) -
1]

_el—m) /‘°° o2 T F0106 _ 3194 897)Kus(-1,2)
v Jo 2

6(4 — 137 + 877 % 952
il T'“L ) Ko(=1,2)] do + pr? “%frf—odm}

r

* 42X+ X,
{2(1 - 1])2 j [3(2)(3,. + Xyo) 4+ ( ";: 9)]K22(0,$) dz
0

d(2XZ, -
dz

" cos fsin 8
T T T r L ond
4-5n7+27

+2(1 - ) ] [2X2, - X,o—z
i

ng)]Kzz(Os z)dz +49(1 - n) X7,
9(1

- n)Kzs(—l,:n)] dz

T

4 oo
+ 2 / 2(2X2, + X,0)[=2(1 — n)K1s(0,) +
)] .

T

+2 [T o0, - X2~ mKus(0,2)+ T (-1, 0)] e

T Jo

oo _ 2
+ i:. [ zX2.[(4 — 137+ 89%)K12(0,2) — L 1?:' +57)
g3

Kza(—]., :c)] dz

— oo 2
- ﬂ‘_(lT_ﬂ f m2f,.2_+f¢;[(4 — 1439+ 3.,72)}{13(_1’3)
)

3(4 — 137 + 872
¥ rl 71)K23

(2,2 dz ~ pn(1 = [ o2 2L K0,2) o}
0 2
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75 2 [Xl / MK {0, .z:)d:r]

T 5= 47 dex
2 oo oo
+ ! [_3_“_;07%&’_] X2 . K1p(0,z)dz — 2(1 - 1))] :nX,l,rKu((),g;)dm] +
r —_— 7) o A
cos 26 oo d(2X2,. + X,6) . i
m;;f {("‘“47} + 37}2) fo [3(2X3,. + Xyg) + = dz ]Kz-(o’m) dx

o0 d(2Xx?: - X,
o [ (22, = X, - s X0 = Kt g, 0,0) o
1]

* 2fi+fo ‘
+ (87— 97*) X2, — u(1 —n)(8n — 977")/0 3= K (0, 3) de

* : 18(1 — 19
+ ! f o(2X2, + Xu)[(6 — Tn + 277 ) K13(0,z) — —(-?‘——les(wl,m)] dz
v /s

b 12n(1 —
+1 j 2(2X2, + XuB)(2(1 — 7} K11(0, ) — -..ﬁ;—’?lxn(_m)} dz

T Jo

e 6(4 — 137 + 89°
+1 f 2 X2, [(~4 + 1Tn — 1202 K12(0,5) + i ) Kya(~1,)] da

rJo

), ]°° z2_ﬁ_é+_f_e[(,4 + 177 - 1292)K1a(~1,2)

" , ©2f2+ f
+6(4 137.7] + 8y )K23(—2’m)] dz + l”l"z / fz:cz 0 z}

7! = X1, + X2, cos 28
T =X} + X2, cos 28 (3.41)

74, = X,pcosfsind

where

Xt = D22 (14 8)) (2, ~(1+ 6)

- 1A= o, )2, ~(1 + 8) + TR L (L, ~6)L(L ~(1+ )
.

+nL(1, —8)L(0,~8)] - 7.
X2 [3(1 20) 11, _8)L(1,~(1 4 6)) - ﬁ.:l"lL(O,a)L(z,—(lw))

= (2 - 317)11(1, —8)L(0,~6)] — 7,
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Xl — (1 - 27’)T2
vz 16;1.

I3(1,~§) — 7,
X2, = { 2"12(0 _6) = 2= B0, —8)L(1, (1 + 6))] — 2.
X,0= %{%ﬁL(o,—a)L(1, _8) - (—1;—’111;(0, —8)L(2,~(1 + 8))
Q=2 O) py gygs, —1 48] 7,
), = -%}[blL(o, —8§)L(1,~8) + b, L(1,—8)L(2, —6)

+ ':—“Lu, —§)L(,—(1 + 8)) + 2‘iz;(l —(1 + 8)L(2, —(1 +6))

+ biL(b —6)L(2,~(1 +8)) + -L(2 —8)L(2,—(1 + 8))]

72, = 16 2[b7L(1 —§)L(0, —6)+b8L(1 -8)L(2, -$)
+ -—L(l —8)L(1,—(1 + &) + -lfiﬂL(o —8)L(2, (1+6))] (3.42)
™= 16 2[an (1,- )bmﬂ(o —6)+ 5 by S IF(1,-(1+8))
bm

—I*(2, (1+6))+ L(O —8)L(1,—(1 + 6))

+ ‘"_“L(l ~8)L(2,-(1 + s)) + by 1*(2,~6)

n "_18_ L(2,~8)L(1, ~(1 + 8))buo (0, ~5)L(2, -5)

2 = 1§u2 [b20%(1, —8) + by I%(0, —6) + ”221;(0 —8)L(1,—(1 + &)
+ b3 L(1, —8)L(2, —(1 + 8))} + b2s L{0, —6)L(2, —8)]
il = g i b’SLa _§)L(1,—(1 + 6)) + bge (1, —8)L(0, —6)

+bar L1, ~8)E(2,~8) + 2210, -5)L(2 ~(1 + 8)

+ b2_9L(1 ~(1+ 8))L(2,-(1 +6))]
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T [bsaL(0, —6)L(0, 6)+5£L(1 _§)L(2, —(1 + 8))

f2

162
+ B2 00,1 §)5(2, ~(1 +8)) + bss L(0, ~§)L(1,1 ~ §)
+bas L(2,~8)L(L,1 — 8) + 22 L(1, ~(1 4 6))L(1,1~ )
+ BT 10, ~8)1(2, ~8) + SLL(0, ~8)L(1, ~(1 + )
+ b3 L(1, —8)L(2,1 — §) + f’7{‘221,(2,—6)_L(1, —(1+68)) + %112(0,—6)]
fo = T2 Sl —8)L0.1 - 8) + bas 2 [2(0,~6) + bas L(0, ~8) (1,1 - 8)

+b45L( ,—8)L(1,1 - 8) + ;‘-"-12(2 —8) + iL(o 1-8§)L{2,—(1 + 6))
”‘“’ b8 11, —8)L(2, (1 + 8)) + ”ﬁLu 1 — §)L(1,~(1 +8))

+ bsoL(l,—6)L(2, -8) + %L(o —8)L(2, -8)

bs3

+%5;2L(2,—6)L(1,—(1+6)) —21%(0,-6) -+ ';i;L(o,-s)L(l,—(us))]

(3.43)
where we have following relations
=1 + 72 cos20, Th, =7p, +7i.cosfsing, Tl =71l +72, cos 26
With similar expressions for 7)., 75, Tg, 1, f+ and fZ. We remark that the quan-
tities K;;(s,z) and b;; are listed in Appendix Az a.nd Appendix Ag respectively.
3.4 Illustration.

The solutions presented above are applicable for all value of § > —1,but are very
complicated. As illustrations of the method we give below the linear and second

order solutions for the specific values of 4.

Linear Case.

(2) Point Force: We first check our results for Cerruti problem. On recalling that
lim TL(n,s,2) = § / Tn(€r)Eletoe e g¢
a—0 0
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we get
P 7t 2 (3-279)z

- [— 6
vr = 41r,uR[R2 + (R+2)? + (R+ z)? Jos
P 2(1—-m)®  3(2-7)z, .

= 0
U= R R T Ryt on
I N LA Ul )L PO

411';LR[R2 - (R+2)

P 293 —(1—2n)rz  4rz+42Rr 3rz

= - 7
Trr—2R3[ (R+Z)2 4+ R+Z R2 ]COS
(1-2n)r2% -2  2rz 8 o
Top = 5 R3[ BT 27 “R12 nr] cos
P 3rz? cos 8
T TR
P 3zr? g
Trs = =g —pg €05
TBZ == 0
P (1-29) |
= _—_>~——sinf
T = pop Bt2) sin
where
R =12+ 22
| (ii) we now consider the case § = —1. In this case we find that
Forr<a
T(2-mv7
=——->——="—cosf
vy 4” o cos
T@R-mvT . 4

T4
T (1-2p)rcosf

4p 2mai(l+ (1 - 57)7)
Trr =T = Tz =Tpg =0

= T (1 r % cos
T e @
T r? _
Tez = -\/—Eﬂ_?(l - ;2-) 7sind
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Forr > a

2 9 VrZ —a?
_5[(2—'q)dga.rcsinf:-+7;,/;r-(_l%.2_a]cosg
(2 )\/?'a.r Y . Ll PP

= Tone ™ —— arcsin — — — s1
4p Y 7a W T Whe 2 "

T (1- 21)v/2a cos 8
4y VT

2 2
Top = T,/Q:[" (-2 l(1 ~ %) Hlcos
7V2a
Vi

o =080 - D)t - 3= Sy Hlsing

Vy = —

Tgg = —T

[(1- ——) +3(1 - —-) =]c056

(244) We next consider § = 0. This case corresponds to a uniform shearing force.

The results are

Forr<a

_~T4777‘ 43—-29) 7 ™y _ O W cos
0p = 4#[3,r FO+ B2 gy 4 12 52— () cost
w= -2 r(C) - LM + P2 - FOsing

T (=2pr
vz—-—-@—-—-zT—-‘cosQ

e = T2L@F(Z) B + 12 =37 3Ty - () cos
rog = ~Talzo=(2F(2) - B(C) + ———4“3 (B(Z) - F(C)eosd
7., =0
reo = T @F(5) — B + ST 2 Ty — p(D)sine
Tpz = ——cos 8

2a
ng=§;sin9
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Forr>a

o=~ (B8 ()4 S ()4 () — Pl eos
= L2 - a2y + 2 (%) - PG ]sine
~_*£(1—2q)a os 6

) p  2r

o = T[22 s %)+ 25(%) - C 2 m2) - B2 eos
=—Tn[ 20 (F(2)+ 2B(2)) - 5 (B(%) ~ F(2)} cos

Tz = Try = Tp: =0

20,1] (3+4n)

Ty = Tlop (F(2) +2B(3)) + 2 —(B() - F(2))]sin®

(vi) Finally we consider § = 7. In this case we get

Forr <a
. _g;[(z —n)V2ra (4= 3yt
r 4 4 8v/2a3
9 - 2
vp = 2[( n)V2wa (4 —nq)V/mr lsiné
4 .- 8v/2a
_ {(1—-29)T v2a° 3 Zf. 3
v, = — ™ 3\/—1'[1 (1 32) | cos 8
(4+n9)/ar
=T—F———cos#
8v2al
13n/m 3.44
Teg = = 8:}5‘ cos § ( )
Tez =0
(2 —n)/mr
1 = =T /)
8v/2a3
T 1‘2 1
Tr: = — ?nra.(l - F)ﬂ cos
T LY
To: = \/217-—0(1 - a‘—:_,)2 sin 6
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Forr >a

TVe (4-m)r [ a r2 Ca
Vp = —ﬁlﬁy. ’-—‘211'[ a 1- 3 +(8—411—(4—37));)&1‘(,:,111;

TVa (4-39)r a® P a
= 16;1,\/2_71'[ - 1- r_z) +(8—4dn)— (4~ 1))(—15 arcsin =

.= — g
v dp 3far
. T [4+11‘ esin 4—1)(1 a??
S - 1 — — - - -
" 2me 4 aa.r ! r 4 r2
7 a2
5(1—;2- ]COSG
Teg = — Tn [~ arcsin —
V2ra 4a
3 a,2 1 1 0,2 3
—Z —;‘?2*5(1—’—2 2]COSO
T::=0
T 2+9 a1 2—-yr . a 3.45
Tre_\/Q—er[ 1 (1 rz) 4 g Aresin - (3.45)
— %(1 - —-)%]smg
Te: =0
ng=0

We point out that in the foregoing expressions the symbols F(z) and E(z) represent
the complete elliptic integrals of the first and second kind,respectively.

The expressions when § = 1,can be computed easily. We find that these again

involve the elliptic integrals.

We remark that, for § = 3/2,5/2,7/2,9/2,-- - ,we can again find the exact solu-

tions.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The Second Order Case.

In this case, since the calculation is very complicated we only select § = 3.

In order io find the second order solutions we first need to find L(n,s). The
remaining calculations involve integration and algebraic manipulations. First we

list L(n,s), as required for our purposes:

Lo, {(’;—“)%(1—5%), r<a
0,—-)= N
2 (ﬁ;)%["’-:?“ +(2-S)arcsinl], r>a
1 ()1 -5), r<a
L(Ov_"z'):{
0, r>a
1 (2_:5')%’ r<a
L(O,-—):{
2 U(@)iRarsing - ()3, r>a
3 3
3 ((EPE1-(1-5)2), r<a
L(l’_§)= 2a® \1
(oﬂg'x);’ r>a
1 (%)%a r<a
L1, -5 ={ (3.46)
’ 2 ‘1 yirr s a . a1
(zpz)7[Sarcsin? — (1— %)z, r>ea
2r¥ 1 r2y—1
1 (57)i(1-32)72, r<ea
L(1’§)=
0’ r>a
ﬂ'""
3 (12805).}’ r<a
L(27_§ = . N . . . 2.3
(32"0)2[(1-;—;)2+;arcsm;—2(21-—;-;)z], r>a
1 ((EHIREA-0-DH-(1-5)3], r<a
L(2,——)=
2 {(58-5;7)%3 ) rT>a
1 0, r<a
L(2»§)={ NP
(B (1-%)% r>a
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On substituting thses values and the other values from (3.41) to (3.43) into (3.40)

we find the second order displacements to be:

16p°w, cos 26 0
l;wg = _2(1 - W)MI(T‘) + (1 - 21])M2(7') + m[(l + 1 — 27 )Ma(?‘)
1(1-

2 2
+ ?ﬂM‘i(r) —2(1 - 5)? -——;—ﬂMc(r) — (44 9 + 4" )M (r)
r

2(4 + 57 — 87° t(1 — )4 + 93+ 49°)
LA +Z ) py(r) + 24 ;)(9 )

Ms(r)

L e - :r 51 — 87°) Mio(r)]

1642wy 2sin20
T2 ~ 4-59+2
_ 4 — i3 + 872
- 20D gy 4 a1 — M) + 2 )
-

p(1 —3)(4 — 137 + 8y°
- =

-

A= nM00) — a0y + (1 - M)

— pn(1 — 7)* Mo(r) )Mo

2
16;;0: = (1 = 2n) My (r) — 2(1 — ) My2(7)
cos20 10— 21n + 87’ - 2 (3.47)
—6n° )M
+ 4—5n+ 2712[ 5 Miys(r) + (51 — 69°) Maa(r)
T (8 - 34 + 240%) Mys(r) + p(1 — 1) (8 — 347 + 2497 ) My (r)]
where

a 2 ' a 2:2 a
Ml('l') = Bl / 322(1 — Z'—z)'iKn(O,:c) dz + Bz/ [1 - (1 - F)Z]Ku(o,:c)d:c
0 0

4by + bg
24

e z “ z?
+ Bs/ P(Z)Kn(o,z)d? - [] [1 - (1 - a»,‘,-)’]Ku(O,a:) dr

e a? 1 dz
+B4j; (1—;)‘K11(0,$)F
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a 2 a
Mz('r) = Bs / :1’2(1 - -z—)Km(O,ﬂ‘:)d.’B - Bs/ 33{{10(0,3) dz
0 0

(1. b13

/[1— 1——) ]2K1{)0£) 3
i I [1—(1—-—-)31[1-—(1——Z)E]Km(o,m)%

97 0

4a 617 / 1-(1- _)5]2K1o(0 :n)

_ 5(53_’“_5.b_1’3)./ (1- _)2[1 -(1- —2—)=]K10(0,z)d—m
- D) [7 (1= 241 - (1 - ZHKu(0,5) 2
—B';/ Km 0 .'l: ———BS/ P (:B)Km(o (B)

_ a(byy +2l’16)/ (1 - = P(:z:)Km(O 11)_

b14(1

Ms(r) = By /0..[1 -(1- %)%]Km(o,z)d:c

by +har f* . T4
- ""8721/0 1= (1= Z)H1Kis(0, ) de

4 :!:2 1 % dz
+ Byp / mz(l - -—.)?Kla(O,‘z) dz 4 By, / P(m)Kls(O,:c)—z—
0 a

‘12

_ absg / (1- _) K1a(0 a:)—

6m

a 2
Ms(‘r) = B12f [1 - (1 - %)E]Ku(o, :B) dz
D
ba7 — bg
T3

/a[l -1- z—z)%]Kn(o,x)dz

¢ z? o dz
— By3 / 32(1 — —)TKH(O, .'D) dz + 314/ P(a:)Ku(O,:c)?
0 a

a3b29

- /ﬂmu-—-) K1 (0, 0% =
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w{(4bao + ba3)

My(r) = - 64ad

2 K12(0.2) dz
0

e 2
+ BIS/ x(l - %)Klg(o,a:)d:n-—
0

1
a{2p(1 —-327)) + b22) )% -1 _._)"‘3(12(0 .r)f—r
Y3

2abyy (120 (1 EoyHKaa(0,0) 2

R a? a? g
oo
_M[ P*(2)K12(0,z)z do
167 a

R j (1= ) P(a)K1a(0,5) 2

: bss + bas
Mg(r)=B15[ 22 Ky3(—1,3) dz - ﬂ—“—i“—)/ 1—-—) 1Kya(=1,) do+
0

¢ T2 2b3g g "y
B]_’([o (1—';)}'{13(—*1,3})(3 +§*;] [( ——') (1 )]Kla( 1 )IJ‘

tall +b) [ E e e
+——%r——]{(1 O = (1 - DKL)

a dz
-i--B;s[o (1- —-)’ -{1- —‘) Krs(-1,3) 75

2 dz
3 z T°\1 P S
+ 40.'(64;)‘:‘ b42) i [1 — (1 — __)%][1 — (1_ -‘1—2-)2]K13(—1,-C) o4

‘b“ 22 R(z)K13(~1,2) dz

/ R(:c).t\la( =1, .l:) 6 2

+Bu | ” P)Q@)Kn(-1,2)5% + B / P(2)Kis(~1, ) do
: e 2, dz

4 b +h) f (1 - L) Pe)Kis(-12)

2

2(11)50

f P(z)Kia(-1, .»,)""'

+ % ] (1——)"K13( o)t
(3.48)
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and where

, 2
P(z) = Z arcsin = — (1- a—,,)%
a T z?
2
z a a 1
3= oaresin & —(1— L)% (3.49)
Q=) _arcsin — (1 = )

2a? z? z?
R(z)= —[1-(1- )} - (-3t

We remark that by replacing K13(0, ) with Kp3(—1,x) in M3 we get My,by replac-
ing K1,(0,z) with Ko1(—1,z) in M5 we get M. Similarly we get Mg and Mie by
replacing Ky2(0,z), K13(—1,z) with K22(—1,z), K23(—2,2) in M7 and M, respec-
tively.Again, when we replace Ki;(0,z), K19(0,z), K13(0, %), K11(0, ), K12(0, 2),
Ky3(0,2) by Koy (0,z), Koo(0,z), K23(0, ), K21 (0, 2), K22(0, ), K23(—1, ) in M,
My, Ms, Ms, M7, My respectively, we obtain My, My2, My3, My, M15,M16. For the
stress components we only give the components 7., and 7{, and the other compo-

nents can be computed in a similar manner. We find

(i) Forr<a
8ulrl, a b 2 3 4a2b, 2,
’T = Bs(1 - —) - BG"' - - [1 ;i')z]z - 97”.47 [1 -(1- a2 2]2_
2a3byg r? 3 7 1 a(3bys — bis) r? 1
9m4u-u——vm—u— - - -
a{6byg — 4by7) r? 4T ot 4(byo + bzs)‘»‘"’
e B (1- " ) 1-Q )z] + cos 26 {Bls(l a"’) 6dat

_a(2pu(1 —2p) + 522)[(1 _ g),} (- _g_)z] _ 2ab24(1 _ g)%[l —(1- g)é]}

3nr? 3nr2

8;1.21', . B, 4bz + bs

T

_B,r(1——-)=+ - (1——)} [1- (1——)]

. 1‘2 1 Jﬂ.(l - 27)) - bg 1‘2 3
+ cos 26 {-Bzzr(l - ;17)2 + 5 M-(1- a_z),]

b 1‘21
~2u-a- 5]
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(¢1) Forr > a

2 2b16) a1
8ulrl Bi . opan adhyy et a(bry + 26 Pr)(1— 24
Tz T AT By P7(r) 167rd {1 7‘2) 16772 (r) r?
4bgp + boa 2 abyy _ ﬂ'i i
— cos 28 [WP (7‘) + =) P(T)(l 1-2))
2 2
8ulr!. B3P(r) B, 2a° - at.
Tzr =—= T Plr)+ 2. (@ r2
ap(l —21)  a{2bs + bg)] cos26P(r)
+ T - 6x r?

In the above Bj; are given in the Appendix 4s, P(r) is defined in (3.49), and T is
given by (3.14).
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CHAPTER IV
SUMMARY AND FUTURE DIRECTIONS

In this thesis, after reviewing the development of the compressible finite elasticity
equations we have given solutions to two traction boundary value problems for the
sccond order clastic materials.

In the first problem we have found an analytical solution for the problem in a
compressible clastic half-space which is acted upon by a non-uniform normal dis-
tributed load for any value of § > —1. The integral transform method is employed
to determine both linear and second order solutions. These solutions are then
specialized for particnlar value of §. In the linear case we consider:

(¢) § = —%, a solution which corresponds to the flat-ended punch problem. Our
solution agrees with that given by Sneddc;ﬁ(1965).

(#1) § = 0, corresponds to uniformly distrinuted load. This solution agrees with
Boussinesq’s solution as given in Sneddon(1972).

(#i2) 6 = %, corresponds to the punch with form of a paraboloid of revolution.
The solution again agrees with Sneddon{1965).

(iv) By letting a — 0 we get the solution for a point load. The soluton again
agrees with Sneddon(1972).

(v) The solutions for § = £,3,7,...are all new. Hopefully these will soon find
applications in other practical situations. V

For the second order elastic case, general expressions for the displacement and
stress components are given when § = 1. Some numerical calculations are carried
out and it is noted that the effect of the consideration of the second order elasticity
is to increase the displa.cément in the z-direction and to decrease the overall value

of the normal stress in the same direction. The solutions are then specialized for an
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incompressible elastic material and the corresponding numerical solutions are also
presented and discussed.

In the second problem, an analytical solution, again, is found for the problem
when the compressible elastic half-space is acted upon by a non-uniform shear
load. Even though, because of the non-symmetrical nature of the problem, the
mathematical analysis is much more difficult in this case, we have succeeded in
obtaining exact solution. The method of integral transform is again cmployed for
both linear and second order solutions. In the linear case we again specialized § for
different possible values and found that the solution when § = 0, corresponding to

uniform shear force, and when @ — 0, the point force solution, again match with

' ¢« g0 . . . 5
the existing solutions. The solutions in other cases, when § = -,1_;, %, 3100+ are, toour

knowledge, all new. For the second order elastic case the general expressions for
the displacement and stress components are given when § = 3. Numerical solution
pertaining to this case are being carried out.

All the above solutions,both for linear and second order elastic cases, apart
of being new solutions, are also useful as preparatory material for contact or crack
problems. We recall that in the case of contact problems we assnme shearing stresses
vanish on the boundary and prescribe normal component of the displacement vector.
In the case of crack problems we prescribe normal stress within the crack region and
assume shearing stresses to vanish on the boundary plane. In the case of contact
problems we thus have solution known outside the contact region but have to match
it with the displacement solution in the contact region. By considering differcnt
values for § we can identify different kind of punch shapes and then determine the
corresponding solutions both for the second order and new linear cases. Similar
remarks apply to crack problems. We hope to carry out such calculaf.fons in the

near future.
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Appendix Ay

For completeness we here give expressions for some quantities in cylindrical polar

coordinate by assutning v, = v.(r, z,0),ve = ve(r, 2,0) and v: = v:(r, 2,0).

Ov v 1 Ovg Ov.
ro 92T r= 99— + fo=92—2=
Crr =2 or’ €66 r r 00 50 == 9z
, 1dv, Ovg g v, Ov, Ovy 10wv;

g 1Y OVs Ve ¢ 9V 9Yr . 9V ovs
“o=17738 " or i T + 0z’ €6: Gz +r6‘9

Ov.Ovg Ov,0vg 1 0v,0vs Ov, vy
¢ Yt YYe L, VW6 Y T s — U
= T e T e e Tae T pe e T vrYY)
M Ov
a00—(89) (60
_ Qv 1O G0
%= B Br 12 06 00 B o2

3v- 10‘0- Ov: .,

_(87' ) +(6z)
2D L?&é‘v_s Bv; Ov
™ 6r+r289(39+ )+3 Bz

P+ (gt )

-~

On recognizing that the boundary is z = 0 and the elastic body occupies the half-
space z > 0, we have (l1,13,13) = (0,0, —1), expressions for the tractions on z =10 -

take the form

0 z Ty i) z 0 LRV
v, T OV, Ov,
o= =y e~ g (A = T
X, = —%)S'Tr: - T:' aava. (A' - gti’-)'r;z + 7!,
Here -
T-A' Gv, v, 18vy Ov.

et
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The body forces are given by
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Appendix A

%F(%, <
Kyo{0, -C)--{
ZF(L), z>r
Z[F(Z)-EB(%)), z<r
K11(0,z) = {
;2~ Y-EB(D), z>r
% z<r
Kw(o .l') {
0, z>r
0, z<r
K1 (0,2) ={
Lz>r
ZF(E)+ 25(B(2)-F(2)), z<r
K(]z(om ={
LB(L) - ZF(L), z>T
0, z LT
K03(0.'.C ={
%(1 2‘5‘)’ T>T
0, z<r
K12(03‘ {
Iy, TO>T
5, <7
Kzl(o:f: -——{
0, z>r
BriE e ’+;,,,3[E( H-FE,  s<r
K13(0:L {
E(Z )]+3,,zaI2E( y=F(L)), z>r
52— 21‘7( 2)] - 53 [E(2) - F(%)], z<r
Kog(o {
%F() 2B(L)} - 25 [B(D) - F(2)], z>r
0, <7
Kgg(ow ={ l
%
0, z<r
K13( 123 ={
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ZIF(E) +2B(2) + E[EE) - F(5). =<r
Ko(-1,z) = { X
ZRF(D) - E(D) + 25[E(E) ~ F(D).  z>r
5. r<r
K22(“’1$m) = { 2
ﬁg, T>T
2;?- ’ o
K23("2am) = {
(1 m s r>r
K23(_13m) = - - i
Swe
1673 T
+(151rz:3 lovr:r:)[E(r )= F( ) T
Kaa(-1,2) = 70 2[2F( ) = B + o= 2P(0) ~ 3E(D)
F(;)], T>T

where E(r) and F(r) are complete elliptic integrals of the first and second kind,

respectively.

Appendix Az

L= / 1 arcsin ¢ &
0 t

1
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L=t - @ —hiEc - By
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Appendix Ay

e1 = 2(1 — 2n)%(a; — day + 443)Q°
c2 = 2(1 = 2)[(1 — 29)(3a1 + 20a; — 12a3 — das) + 2(3a; ~ 405)]Q°
ez = 2(1 — 29)[(1 = 29)(ay + das + 12a3 + 48a,) + 2(a; + 8as — 4a3)}Q?
e = 8(1 — )[2(1 - n)(a1 + 4a2) — a1]Q?
cs = —16(1 — 1)%(3a; + 4a;)Q?
cs = 8(1 — 7)a, Q*
cr = —4(1 = n)(1 - 29)a, Q?
cs = 2(1 — 29)[(1 = 29)(ay + 4a5 + 125 + 48ay) — 20,)Q?
s = 4(1 — 21)*(ay + 2az — 2a3 — 2a5)Q?
c10 = 8(1 — n)*(a; + 202)Q?
enn = (1=9)(5 — 4n)a:1Q* /=
c12 = (1 — 20)Q%[(1 ~ 29)(3a1 + 36az + 10as + 43a4 + 8as) + 24(2az — a3)]/=
as = (1 — 29)Q%[12(as + 6a3 — 12a;)
— (1 = 29)(27a1 + 156a2 + 300as + 129a4 -+ 4a3)]/7
c1e = (1 — 29)(3 — 29)7a, Q°
e1s = 2(1 — 20)Q%[(1 — 29)(53a, + 220a; + 23643 + 129624 — 52a;)
+ 6(—ay + 16a; — 8az — 2as5)]/(97)
c1s = 2(1 — 27)Q%[12(as — 12a + 6a3)
— (1 — 2n)(43a; + 188a; + 268as + 1296a4 — 28as)]/(8)
c17 = 2(1 — 21)Q*[2(6a; + 24a; — 12a; — 2a5)
+ (1 — 2n)(8ay + 36az + 209a3 + 144a4 — 4as)]/(37)
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c1s = 2(1 — 27)Q%[12(—3a; — 12a; + 6az + as)
7 — (1 — 29)(17a; + 10022 + 698as + 43204 — 12a5)j/(97)
19 = 2(1 — 27)Q%[(1 — 29)(67a; + 260a; + 244a; + 129604 — 44as)

+ 36(4az — 2a3 — a5)]/(367) + (1 — n)a1 Q% /=

Appendix A;

u(l —29) 2 — 4b, + 3bs — bg

b= 50 4802
B, - # —29)(2+79) 4bs+by

z = 12 48

by + 2b
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b b
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8= 64ra
g. - - 3n)(1 —2n)  4bys + byo +4by

= 4 32
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311(1 - 27}) - 3621 + 624

Bys =

3ra
7!'(16630 + 8bgy + 2832 + 4b33 + Bbya + 4?)-&3 + 2bas + bys)
Bie = 16a3
+ 61)34 - 2b35 + Gb.;.; — 2{)45
3na®
6byy — 2b37 + Gbss — 2bs
Bir = 37a
20.(31)33 - b40 + 3b54 - bsz)
Bis = 7.4
4bsg + baz + 4bsa + by
Bys = 47a
4byy + b3y + 4byp + by
Bao = dra
- 4a%(byo + bos + 2bys)
Ba = I
pn(l —2n) + 4u(2 — 3n)  12b; — 4bg + 3byo
B2 = 8a? t 48q?

Appendix Ag

by = —(4 — 9 + 10n%)ay + (1 — 29)(6 + 49)(2a2 — as) + (5 — 2n)as
by = —(1 — 29)(2 — n)ar — 21 ~ 29)*(2az — as) + (1 — 2n)as
by = 6(1 — 27)(1 — )a; +4(1 — 27;)2(242 —a3) — 2(1 — 23)as
by = —129(1 — 2n)a; + 8n(1 — 2p)as
= (14 — 45)%a; — 167a;
be = 4n(1 — 2n)(a1 —as)
bz =(6+ 51; 109%)a; + (1 — 29)(6 + 47%)(2a2 — g/ + (5 — 2)a;
(0 Zr)as — 21 — 20 (22 — 23) = (1 — b
by = (1 — 20)(2 - 6n)ax + 4(1 ~ 29)*(2a; — as) + 2(1 — 27)as
bio = —6(1 — 2n)a1 +4n(1 — 2n)as
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b1y = 41%ay + 16(n + 5% )as + (12 — 3277 — 1692 )as + 48(1 — 27)%a, — 4as

—1
7= 16y ay + (27 — 28y + 129 )ag — (9 — 27 + 29%)as

bz =
bg = —(1-- 27;)2((11 —4a;, + 2a3)
b4 = 169%(ay + 2a; — 2a3 — 2as)
bis = 2(1 — 2n)%(a; — 2a; + 2a3)

big = 41]2(7(11 — 2ay + 4a3 — 4a;)

(1 =29)?
===

()13 = 2(1 - 27])2((11 + (1,3)

bi7 (2a2 — a3}
big = —(1 — 21)*(ay + a3)
by = —(8 + 457)%ay — 16(1 — p)ag + (1 — 27)(20 — 24n)as +48(1 — 29)%ay + 4as
bay = 2(1 — 2n)%az — 4(1 ~ 29)(a1 + a3)
22 = —4(1 — 24)%az — 8(1 — 29)(ay + a3)
bas = —165(2 — ){(a1 + a3)
b2y = 4(1 — 29)(ay + a3)
bys = —6(1 — 2n)ay + 4(1 — 29)%(2a; + a3) + (1 — 29)(6 — 4n)as
bas = —(10 — 199 + 65°)ay — (1 — 27)(10 — 49)(2a; — a3) + (7 ~ 67 + 45%)as
by = —(1 - 2q)(11 - 49)ay — 2(1 — 29)*(2a; - as) + (1 ~ 27)(3 — 29)as
bys = —(18 + 4n?)ay + 165,
bag = 47(1 — 2n)a,
by = (8 — 3297 + 29°)a; + (8 — 567 + 169%)az + (1 — 27)(20 — 447)as
+ 96(1 — 2)%ay — (6 — 27)as
b3y = (8 + 4 + 409%)ay — 16(2 ~ Ty + 29°)a; + 8(1 + 39 — 477 as

- 96(1 — 29)%ay — 4nas
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by = —8(197 — Tn?)ay — 64(29 — " )as

bsz = (667 — 445 )a; + 329(1 — 27)az + 325%a3 — 89(3 — 2)us
17 + 167 — 417

by = 5 ay — 16(1 — 2n)ag + 2(1 — 49%)az — 3(5 — 2n)as
_ 2
bas = 2T E I o) (1 - 290z — (1 - 2)(6 — dn)as — 3(1 — 2n)a
- 2
byg = — a 21))(213 + 2n) a; + (1 — 29)(10 — 45)az + 6(1 — 2%)a;

byz = —2(1 - 29)(9 — 5n)ay + 2(1 ~ 29)(5 — 257)as
big =2 — (1 — 29)*(a; — as)
bys = (2 =7+ 9% )ar + (1 — 29)(2 ~ 29)(2a2 — a3) + (1 —)as
bso = 2(1 — 27)*(2az — a3)
by = —4(2 —~ q)z(al - as)
by = (12 — 29 + 69)ay — (1 — 29)(4 + 49)(2az — a3) — (6 — 107 + 47%)ag
by = —4(12n — 119*)a; + 8(3 ~ 2n)az — §(1 —~ 29)(5 — Tn)as
— 96(1 — 2n)%ay + 209(1 — 29)as
bag = (9 — 179 + 69%)as + 2(1 — 27)*(2a2 — as) + (1 ~ 29)(2 ~ n)as
bys = (4 — 9+ 2n%)ay +2(1 — 21)%(2a2 — a3) — (1 — 29)(2 — )as
bse = ~(1 — 27)*(ay — as)
byr = (320 — 249%)a; + 169(1 — 29)(2a2 — a3) — 87(3 + 2n)as
bss = (16 + 2470 — 1089%)a; + 32(2n ~ 29%)as + 1287%a;
.‘.}549 =—(2-34n+ 40n%)a; — 4(1 — 29)%(2a; — ag) + (1 — 27)(8 — 49))as

bso = (8 — 129 + 67%)as + (1 — 29)(4 — 49)(2a2 — a3) — (6 — 109 + 497 )as
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byy = —(1 — 27)(30 — 127)a; — 8(1 — 27)%a3 + 12(1 — 29)as

i

hso = —2(1 — 2p)%ay

bss = —3(1 — 21)%a; — 4(1 — 21)%a; — 8(1 — 2p)a; — {1 — 21)(3 + 2n)as

bgg = (1 — 29)(17 — 10n)a; + 8(1 — 29)%as + 16(1 — 21)as
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Fig. 1. Normal Loading
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Fig. 2. Shear Loading
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